10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A review on biosurfactants: properties, applications and current developments

      , ,
      Bioresource Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial biosurfactants production, applications and future potential.

          Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial degradation of petroleum hydrocarbons.

            Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biosurfactants: potential applications in medicine.

              The use and potential commercial application of biosurfactants in the medical field has increased during the past decade. Their antibacterial, antifungal and antiviral activities make them relevant molecules for applications in combating many diseases and as therapeutic agents. In addition, their role as anti-adhesive agents against several pathogens indicates their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction in a large number of hospital infections without the use of synthetic drugs and chemicals. This review looks at medicinal and therapeutic perspectives on biosurfactant applications.
                Bookmark

                Author and article information

                Journal
                Bioresource Technology
                Bioresource Technology
                Elsevier BV
                09608524
                June 2021
                June 2021
                : 330
                : 124963
                Article
                10.1016/j.biortech.2021.124963
                33744735
                695c9a32-b3de-4fae-9980-386f646be23e
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article