Recent basic studies demonstrate that the lung is a primary organ of platelet biogenesis. However, whether the pathophysiological state of the lung affect the platelets is little known. We aim to investigate the incidence of thrombocytopenia in patients with pulmonary infection (PIN) and risk factors associated with pulmonary thrombocytopenia.
In total, 11,941 patients with pulmonary infection (PIN) were enrolled, and patients with other three infectious diseases were collected as controls. The incidence of thrombocytopenia was compared, and the risk factors associated with thrombocytopenia in PIN patients were investigated by multivariate analysis. To explore the mechanism of thrombocytopenia, hypoxic model was constructed. Blood platelet counts from the angular vein (PLTs), left ventricle (PLT post) and right ventricle (PLT pre) were determined. Megakaryocytes identified by anti-CD41 antibody were detected through flow cytometry and immunofluorescence.
The incidence of thrombocytopenia in PIN was higher than that in other three infectious diseases (9.8% vs. 6.4% ~ 5.0%, P < 0.001). Low arterial oxygen partial pressure (PaO 2) was an important risk factor for thrombocytopenia (OR = 0.88; P < 0.001). In a hypoxic mouse model, PLTs decreased (518.38 ± 127.92 vs 840.75 ± 77.30, P < 0.05), which showed that low PaO 2 induced thrombocytopenia. The difference between the PLT post and PLT pre (∆PLT post-pre), representing the production of platelets in the lungs, was significantly attenuated in hypoxic mice when compared with normoxic mice (F = 25.47, P < 0.05). Additionally, proportions of CD41-positive megakaryocytes in the lungs, marrow, spleen all decreased in hypoxic mice.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.