6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SeXX Matters in Multiple Sclerosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). An interesting feature that this debilitating disease shares with many other inflammatory disorders is that susceptibility is higher in females than in males, with the risk of MS being three times higher in women compared to men. Nonetheless, while men have a decreased risk of developing MS, many studies suggest that males have a worse clinical outcome. MS exhibits an apparent sexual dimorphism in both the immune response and the pathophysiology of the CNS damage, ultimately affecting disease susceptibility and progression differently. Overall, women are predisposed to higher rates of inflammatory relapses than men, but men are more likely to manifest signs of disease progression and worse CNS damage. The observed sexual dimorphism in MS may be due to sex hormones and sex chromosomes, acting in parallel or combination. In this review, we outline current knowledge on the sexual dimorphism in MS and discuss the interplay of sex chromosomes, sex hormones, and the immune system in driving MS disease susceptibility and progression.

          Related collections

          Most cited references220

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple Sclerosis

          New England Journal of Medicine, 343(13), 938-952
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology.

            Intrathecal antibody production is a hallmark of multiple sclerosis and humoral immunity is thought to play an important role in the inflammatory response and development of demyelinated lesions. The presence of lymphoid follicle-like structures in the cerebral meninges of some multiple sclerosis patients indicates that B-cell maturation can be sustained locally within the CNS and contribute to the establishment of a compartmentalized humoral immune response. In this study we examined the distribution of ectopic B-cell follicles in multiple sclerosis cases with primary and secondary progressive clinical courses to determine their association with clinical and neuropathological features. A detailed immunohistochemical and morphometric analysis was performed on post-mortem brain tissue samples from 29 secondary progressive (SP) and 7 primary progressive (PP) multiple sclerosis cases. B-cell follicles were detected in the meninges entering the cerebral sulci of 41.4% of the SPMS cases, but not in PPMS cases. The SPMS cases with follicles significantly differed from those without with respect to a younger age at multiple sclerosis onset, irreversible disability and death and more pronounced demyelination, microglia activation and loss of neurites in the cerebral cortex. Cortical demyelination in these SPMS cases was also more severe than in PPMS cases. Notably, all meningeal B-cell follicles were found adjacent to large subpial cortical lesions, suggesting that soluble factors diffusing from these structures have a pathogenic role. These data support an immunopathogenetic mechanism whereby B-cell follicles developing in the multiple sclerosis meninges exacerbate the detrimental effects of humoral immunity with a subsequent major impact on the integrity of the cortical structures.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Sex differences in autoimmune disease.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                03 July 2020
                2020
                : 11
                : 616
                Affiliations
                Department of Neurology, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth , Lebanon, NH, United States
                Author notes

                Edited by: Maria Pia Amato, University of Florence, Italy

                Reviewed by: Niels Hellings, University of Hasselt, Belgium; Trygve Holmøy, Akershus University Hospital, Norway

                *Correspondence: Francesca Gilli francesca.gilli@ 123456dartmouth.edu

                This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2020.00616
                7347971
                32719651
                3ac7e330-cb22-4024-9e31-d63d1535dbdc
                Copyright © 2020 Gilli, DiSano and Pachner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 January 2020
                : 27 May 2020
                Page count
                Figures: 3, Tables: 6, Equations: 0, References: 278, Pages: 20, Words: 17887
                Categories
                Neurology
                Review

                Neurology
                multiple sclerosis,sex dimorphism,sex chromosome,sex hormones,neurodegeneration
                Neurology
                multiple sclerosis, sex dimorphism, sex chromosome, sex hormones, neurodegeneration

                Comments

                Comment on this article