0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unravelling the Collective Calcium Dynamics of Physiologically Aged Astrocytes under a Hypoxic State In Vitro

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Astrocytes serve many functions in the brain related to maintaining nerve tissue homeostasis and regulating neuronal function, including synaptic transmission. It is assumed that astrocytes are crucial players in determining the physiological or pathological outcome of the brain aging process and the development of neurodegenerative diseases. Therefore, studies on the peculiarities of astrocyte physiology and interastrocytic signaling during aging are of utmost importance. Calcium waves are one of the main mechanisms of signal transmission between astrocytes, and in the present study we investigated the features of calcium dynamics in primary cultures of murine cortical astrocytes in physiological aging and hypoxia modeling in vitro. Specifically, we focused on the assessment of calcium network dynamics and the restructuring of the functional network architecture in primary astrocytic cultures. Calcium imaging was performed on days 21 (“young” astrocyte group) and 150 (“old” astrocyte group) of cultures’ development in vitro. While the number of active cells and frequency of calcium events were decreased, we observed a reduced degree of correlation in calcium dynamics between neighboring cells, which was accompanied by a reduced number of functionally connected cells with fewer and slower signaling events. At the same time, an increase in the mRNA expression of anti-apoptotic factor Bcl-2 and connexin 43 was observed in “old” astrocytic cultures, which can be considered as a compensatory response of cells with a decreased level of intercellular communication. A hypoxic episode aggravates the depression of the connectivity of calcium dynamics of “young” astrocytes rather than that of “old” ones.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Astrocyte Senescence as a Component of Alzheimer’s Disease

          Aging is the main risk factor for Alzheimer’s disease (AD); however, the aspects of the aging process that predispose the brain to the development of AD are largely unknown. Astrocytes perform a myriad of functions in the central nervous system to maintain homeostasis and support neuronal function. In vitro, human astrocytes are highly sensitive to oxidative stress and trigger a senescence program when faced with multiple types of stress. In order to determine whether senescent astrocytes appear in vivo, brain tissue from aged individuals and patients with AD was examined for the presence of senescent astrocytes using p16INK4a and matrix metalloproteinase-1 (MMP-1) expression as markers of senescence. Compared with fetal tissue samples (n = 4), a significant increase in p16INK4a-positive astrocytes was observed in subjects aged 35 to 50 years (n = 6; P = 0.02) and 78 to 90 years (n = 11; P<10−6). In addition, the frontal cortex of AD patients (n = 15) harbored a significantly greater burden of p16INK4a-positive astrocytes compared with non-AD adult control subjects of similar ages (n = 25; P = 0.02) and fetal controls (n = 4; P<10−7). Consistent with the senescent nature of the p16INK4a-positive astrocytes, increased metalloproteinase MMP-1 correlated with p16INK4a. In vitro, beta-amyloid 1–42 (Aβ1–42) triggered senescence, driving the expression of p16INK4a and senescence-associated beta-galactosidase. In addition, we found that senescent astrocytes produce a number of inflammatory cytokines including interleukin-6 (IL-6), which seems to be regulated by p38MAPK. We propose that an accumulation of p16INK4a-positive senescent astrocytes may link increased age and increased risk for sporadic AD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease.

            Astrocytes are fundamental for brain homeostasis and are at the fulcrum of neurological diseases including Alzheimer's disease (AD). Here, we monitored changes in astroglia morphology throughout the age-dependent progression of AD. We used an immunohistochemical approach that allows us to determine the domain of glial cytoskeleton, by measuring the surface, volume, and the relationship between astrocytes and neuritic plaques. We investigated astroglia in the hippocampus of a triple transgenic mouse model of AD (3xTg-AD) that mimics the progression of the human disease. The numerical density of astrocytes is affected neither by AD nor by age. We found reduction of surface and volume of GFAP profiles from early ages (6 months; 43.84 and 52.76%, respectively), persisting at 12 (40.73 and 45.39%) and 18 months (64.80 and 71.95%) in the dentate gyrus (DG) of 3xTg-AD, whereas in CA1 it appears at 18 months (29.42 and 32.74%). This cytoskeleton atrophy is accompanied by a significant reduction of glial somata volume in DG at 12 and 18 months (40.46 and 75.55%, respectively), whereas in CA1 it is significant at 18 months (42.81%). However, while astroglial atrophy appears as a generalized process, astrocytes surrounding plaques are clearly hypertrophic as revealed by increased surface (48.06%; 66.66%), and volume (57.10%; 71.06%) of GFAP profiles in DG and CA1, respectively, at 18 months. We suggest differential effects of AD on astroglial populations depending on their association with plaques accounting for the progressive disruption of neural networks connectivity and neurotransmitters imbalance which underlie mnesic and cognitive impairments observed in AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease

              The role of microglial cells in the pathogenesis of Alzheimer’s disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down’s syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Aβ) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Aβ does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious disease. The findings reported here strongly argue against the hypothesis that neuroinflammatory changes contribute to AD dementia. Instead, they offer an alternative hypothesis of AD pathogenesis that takes into consideration: (1) the notion that microglia are neuron-supporting cells and neuroprotective; (2) the fact that development of non-familial, sporadic AD is inextricably linked to aging. They support the idea that progressive, aging-related microglial degeneration and loss of microglial neuroprotection rather than induction of microglial activation contributes to the onset of sporadic Alzheimer’s disease. The results have far-reaching implications in terms of reevaluating current treatment approaches towards AD.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                August 2023
                July 31 2023
                : 24
                : 15
                : 12286
                Article
                10.3390/ijms241512286
                3ac2bfe8-fac6-4ec1-952c-3260f97186b5
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article