16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly pathogenic and transmissible. It is mediated by the binding of viral spike proteins to human cells via entry and replication processes involving human angiotensin converting enzyme-2 (hACE2), transmembrane serine protease (TMPRSS2) and cathepsin L (Cath L). The identification of novel therapeutics that can modulate viral entry or replication has been of research interest and would be germane in managing COVID-19 subjects. This study investigated the structure-activity relationship inhibitory potential of 99 phytocompounds from selected African botanicals with proven therapeutic benefits against respiratory diseases focusing on SARS-CoV-2's human cell proteins (hACE2, TMPRSS2, and Cathepsin L) as druggable targets using computational methods. Evaluation of the binding energies of the phytocompounds showed that two compounds, Abrusoside A (−63.393 kcal/mol) and Kaempferol-3- O-rutinoside (−58.939 kcal/mol) had stronger affinity for the exopeptidase site of hACE2 compared to the reference drug, MLN-4760 (−54.545 kcal/mol). The study further revealed that Verbascoside (−63.338 kcal/mol), Abrectorin (−37.880 kcal/mol), and Friedelin (−36.989 kcal/mol) are potential inhibitors of TMPRSS2 compared to Nafamostat (−36.186 kcal/mol), while Hemiphloin (−41.425 kcal/mol), Quercetin-3- O-rutinoside (−37.257 kcal/mol), and Myricetin-3- O-galactoside (−36.342 kcal/mol) are potential inhibitors of Cathepsin L relative to Bafilomycin A1 (−38.180 kcal/mol). The structural analysis suggests that these compounds do not compromise the structural integrity of the proteins, but rather stabilized and interacted well with the active site amino acid residues critical to inhibition of the respective proteins. Overall, the findings from this study are suggestive of the structural mechanism of inhibitory action of the identified leads against the proteins critical for SARS-CoV-2 to enter the human host cell. While the study has lent credence to the significant role the compounds could play in developing potent SARS-CoV-2 candidate drugs against COVID-19, further structural refinement, and modifications of the compounds for subsequent in vitro as well as preclinical and clinical evaluations are underway.

          Graphical abstract

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing

          SUMMARY The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.

              We describe PTRAJ and its successor CPPTRAJ, two complementary, portable, and freely available computer programs for the analysis and processing of time series of three-dimensional atomic positions (i.e., coordinate trajectories) and the data therein derived. Common tools include the ability to manipulate the data to convert among trajectory formats, process groups of trajectories generated with ensemble methods (e.g., replica exchange molecular dynamics), image with periodic boundary conditions, create average structures, strip subsets of the system, and perform calculations such as RMS fitting, measuring distances, B-factors, radii of gyration, radial distribution functions, and time correlations, among other actions and analyses. Both the PTRAJ and CPPTRAJ programs and source code are freely available under the GNU General Public License version 3 and are currently distributed within the AmberTools 12 suite of support programs that make up part of the Amber package of computer programs (see http://ambermd.org ). This overview describes the general design, features, and history of these two programs, as well as algorithmic improvements and new features available in CPPTRAJ.
                Bookmark

                Author and article information

                Journal
                J Mol Graph Model
                J Mol Graph Model
                Journal of Molecular Graphics & Modelling
                Elsevier Inc.
                1093-3263
                1873-4243
                12 April 2022
                July 2022
                12 April 2022
                : 114
                : 108185
                Affiliations
                [1]Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
                Author notes
                []Corresponding author.
                Article
                S1093-3263(22)00064-X 108185
                10.1016/j.jmgm.2022.108185
                9002601
                35430474
                3aa3ccd0-6b39-40e3-a4b2-95bd45cf0efd
                © 2022 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 5 February 2022
                : 26 March 2022
                : 28 March 2022
                Categories
                Article

                Bioinformatics & Computational biology
                covid-19,host cell targets,molecular dynamics simulation,phytocompounds,sars-cov-2

                Comments

                Comment on this article