34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fundamental properties of neutron stars provide a direct test of the equation of state of cold nuclear matter, a relationship between pressure and density that is determined by the physics of the strong interactions between the particles that constitute the star. The most straightforward method of determining these properties is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere. The equation of state implies a mass-radius relation, while a measurement of the gravitational redshift at the surface of a neutron star provides a direct constraint on the mass-to-radius ratio. Here we report the discovery of signficant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO 0748-676. We identify the most signficant features with the Fe XXVI and XXV n=2-3 and O VIII n=1-2 transitions, all with a redshift of z=0.35, identical within small uncertainties for the respective transitions. For an astrophysically plausible range of masses (M ~ 1.3-2.0 M_solar), this value is completely consistent with models of neutron stars composed of normal nuclear matter, while it excludes some models in which the neutron stars are made of more exotic matter.

          Related collections

          Author and article information

          Journal
          06 November 2002
          Article
          10.1038/nature01159
          astro-ph/0211126
          3a209711-c521-418c-9c98-d27bc4212954
          History
          Custom metadata
          Nature 420 (2002) 51-54
          Published in Nature (Nov 7, 2002)
          astro-ph

          Comments

          Comment on this article