8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Myopia Genetics and Heredity

      , , , , ,
      Children
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myopia is the most common eye condition leading to visual impairment and is greatly influenced by genetics. Over the last two decades, more than 400 associated gene loci have been mapped for myopia and refractive errors via family linkage analyses, candidate gene studies, genome-wide association studies (GWAS), and next-generation sequencing (NGS). Lifestyle factors, such as excessive near work and short outdoor time, are the primary external factors affecting myopia onset and progression. Notably, besides becoming a global health issue, myopia is more prevalent and severe among East Asians than among Caucasians, especially individuals of Chinese, Japanese, and Korean ancestry. Myopia, especially high myopia, can be serious in consequences. The etiology of high myopia is complex. Prediction for progression of myopia to high myopia can help with prevention and early interventions. Prediction models are thus warranted for risk stratification. There have been vigorous investigations on molecular genetics and lifestyle factors to establish polygenic risk estimations for myopia. However, genes causing myopia have to be identified in order to shed light on pathogenesis and pathway mechanisms. This report aims to examine current evidence regarding (1) the genetic architecture of myopia; (2) currently associated myopia loci identified from the OMIM database, genetic association studies, and NGS studies; (3) gene-environment interactions; and (4) the prediction of myopia via polygenic risk scores (PRSs). The report also discusses various perspectives on myopia genetics and heredity.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A global reference for human genetic variation

          The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050.

            Myopia is a common cause of vision loss, with uncorrected myopia the leading cause of distance vision impairment globally. Individual studies show variations in the prevalence of myopia and high myopia between regions and ethnic groups, and there continues to be uncertainty regarding increasing prevalence of myopia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              GENCODE reference annotation for the human and mouse genomes

              Abstract The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.
                Bookmark

                Author and article information

                Contributors
                Journal
                Children
                Children
                MDPI AG
                2227-9067
                March 2022
                March 09 2022
                : 9
                : 3
                : 382
                Article
                10.3390/children9030382
                8947159
                35327754
                39e2b94f-9057-4b54-94ff-77283104220e
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article