14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The applications of nanozymes in neurological diseases: From mechanism to design

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanozymes are a class of nanomaterials with enzyme-like catalytic activities. Due to their multiple catalytic activities, as well as their good stability, modifiable activity and other advantages over natural enzymes, they have a wide range of application prospects in sterilization, the treatment of inflammation, cancer, and neurological diseases, and other fields. In recent years, it has been found that various nanozymes have antioxidant activity, allowing them to simulate the endogenous antioxidant system and play an important role in cell protection. Therefore, nanozymes can be applied in the treatment of reactive oxygen species (ROS)-related neurological diseases. Another advantage of nanozymes is that they can be customized and modified in a variety of ways to increase their catalytic activity beyond that of classical enzymes. In addition, some nanozymes have unique properties, such as the ability to effectively penetrate the blood‒brain barrier (BBB) or to depolymerize or otherwise eliminate misfolded proteins, making them potentially useful therapeutic tools for the treatment of neurological diseases. Here, we review the catalytic mechanisms of antioxidant-like nanozymes, as well as the latest research progress and strategies for designing therapeutic nanozymes, aiming to promote the development of more effective nanozymes for the treatment of neurological diseases in the future.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

          Summary Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.

            Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selenium: biochemical role as a component of glutathione peroxidase.

              When hemolyzates from erythrocytes of selenium-deficient rats were incubated in vitro in the presence of ascorbate or H(2)O(2), added glutathione failed to protect the hemoglobin from oxidative damage. This occurred because the erythrocytes were practically devoid of glutathione-peroxidase activity. Extensively purified preparations of glutathione peroxidase contained a large part of the (75)Se of erythrocytes labeled in vivo. Many of the nutritional effects of selenium can be explained by its role in glutathione peroxidase.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2023
                23 April 2023
                : 13
                : 8
                : 2492-2514
                Affiliations
                Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
                Author notes
                ✉ Corresponding author: Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, P. R. China. E-mail address: peifli@ 123456qdu.edu.cn ; yuan_zhang84@ 123456qdu.edu.cn . Tel.: +86-532-82991791(P.L. & Y.Z.)

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov13p2492
                10.7150/thno.83370
                10196824
                37215578
                3979fc51-75ac-4db9-8fba-4f776a1ce3e5
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 9 February 2023
                : 6 April 2023
                Categories
                Review

                Molecular medicine
                nanozymes,neurological diseases,ros
                Molecular medicine
                nanozymes, neurological diseases, ros

                Comments

                Comment on this article