Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Knee extensor torque and perceived discomfort during symmetrical biphasic electromyostimulation.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to examine the effects of simultaneously delivering 2 channels of electromyostimulation (EMS) current using 2 different electrode arrangements. Ten men and 10 women university students had 4 reusable electrodes placed (2 proximal, 2 distal) medial and lateral on the quadriceps muscle group. Isokinetic voluntary peak torque (VPT) of the quadriceps was determined at 60 degrees x s(-1). A symmetrical biphasic square wave current was applied using 2 independent channels in either a parallel (P) or a crossed (X) electrode arrangement. Subjects increased the current until maximal tolerance was achieved. No significant differences in percent VPT or perceived discomfort (PD) were observed between men and women. Percent VPT was significantly greater using the X (57.2 +/- 11.3%) vs. the P (46.5 +/- 10.7%) pad placement; however, pad placement did not affect peak PD. Data from this study suggest that a 2-channel application of EMS using a crossed electrode arrangement provides greater knee extensor force without greater discomfort.

          Related collections

          Author and article information

          Journal
          J Strength Cond Res
          Journal of strength and conditioning research
          1064-8011
          1064-8011
          Feb 2001
          : 15
          : 1
          Affiliations
          [1 ] University of California-Berkeley, Department of Human Biodynamics, 97420, USA.
          Article
          11708690
          394f1210-7ac1-42a9-890d-0e6bce998258
          History

          Comments

          Comment on this article