27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmodium falciparum-Infected Erythrocyte Knob Density Is Linked to the PfEMP1 Variant Expressed

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate the relationship between the densities of these IE surface knobs and the PfEMP1 variant expressed, we used specific antibody panning to generate three sublines of the P. falciparum clone IT4, which expresses the PfEMP1 variants IT4VAR04, IT4VAR32b, and IT4VAR60. The knob density in each subline was then determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and compared to PfEMP1 and knob-associated histidine-rich protein (KAHRP) expression. Selection for uniform expression of IT4VAR04 produced little change in knob density, compared to unselected IEs. In contrast, selection for IT4VAR32b expression increased knob density approximately 3-fold, whereas IEs selected for IT4VAR60 expression were essentially knobless. When IT4VAR60 + IEs were subsequently selected to express IT4VAR04 or IT4VAR32b, they again displayed low and high knob densities, respectively. All sublines expressed KAHRP regardless of the PfEMP1 expressed. Our study documents for the first time that knob density is related to the PfEMP1 variant expressed. This may reflect topological requirements to ensure optimal adhesive properties of the IEs.

          IMPORTANCE

          Infections with Plasmodium falciparum malaria parasites are still responsible for many deaths, especially among children and pregnant women. New interventions are needed to reduce severe illness and deaths caused by this malaria parasite. Thus, a better understanding of the mechanisms behind the pathogenesis is essential. A main reason why Plasmodium falciparum malaria is more severe than disease caused by other malaria species is its ability to express variant antigens on the infected erythrocyte surface. These antigens are presented on membrane protrusions known as knobs. This study set out to investigate the interplay between different variant antigens on the surface of P. falciparum-infected erythrocytes and the density of the knobs on which the antigens are expressed. Such a direct analysis of this relationship has not been reported before but adds to the important understanding of the complexity of malaria antigen presentation.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration.

          The sequestration of parasitized erythrocytes in the microvasculature of vital organs is central to the pathogenesis of severe Plasmodium falciparum malaria. This process is mediated by specific interactions between parasite adherence ligands and host receptors on vascular endothelium such as intercellular adhesion molecule-1 (ICAM-1) and CD36. Using immunohistochemistry we have examined the distribution of putative sequestration receptors in different organs from fatal cases of P. falciparum malaria and noninfected controls. Receptor expression and parasite sequestration in the brain were quantified and correlated. Fatal malaria was associated with widespread induction of endothelial activation markers, with significantly higher levels of ICAM-1 and E-selectin expression on vessels in the brain. In contrast, cerebral endothelial CD36 and thrombospondin staining were sparse, with no evidence for increased expression in malaria. There was highly significant co-localization of sequestration with the expression of ICAM-1, CD36, and E-selectin in cerebral vessels but no cellular inflammatory response. These results suggest that these receptors have a role in sequestration in vivo and indicate that systemic endothelial activation is a feature of fatal malaria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid switching to multiple antigenic and adhesive phenotypes in malaria.

            Adhesion of parasitized erythrocytes to post-capillary venular endothelium or uninfected red cells is strongly implicated in the pathogenesis of severe Plasmodium falciparum malaria. Neoantigens at the infected red-cell surface adhere to a variety of host receptors, demonstrate serological diversity in field isolates and may also be a target of the host-protective immune response. Here we use sequential cloning of P. falciparum by micromanipulation to investigate the ability of a parasite to switch antigenic and cytoadherence phenotypes. Our data show that antigens at the parasitized cell surface undergo clonal variation in vitro in the absence of immune pressure at the rate of 2% per generation with concomitant modulations of the adhesive phenotype. A clone has the potential to switch at high frequency to a variety of antigenic and adhesive phenotypes, including a new type of cytoadherence behaviour, 'auto-agglutination' of infected erythrocytes. This rapid appearance of antigenic and functional heterogeneity has important implications for pathogenesis and acquired immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A family affair: var genes, PfEMP1 binding, and malaria disease.

              An immunovariant adhesion protein family in Plasmodium falciparum named erythrocyte membrane protein 1 (PfEMP1), encoded by var genes, is responsible for both antigenic variation and cytoadhesion of infected erythrocytes at blood microvasculature sites throughout the body. Elucidation of the genome sequence of P. falciparum has revealed that var genes can be classified into different groups, each with distinct 5' flanking sequences, chromosomal locations and gene orientations. Recent binding and serological comparisons suggest that this genomic organization might cause var genes to diversify into separately recombining adhesion groups that have different roles in infection and disease. Detailed understanding of PfEMP1 expression and receptor binding mechanisms during infection and of the antigenic relatedness of disease variants might lead to new approaches in prevention of malaria disease.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                6 October 2015
                Sep-Oct 2015
                : 6
                : 5
                : e01456-15
                Affiliations
                [a ]Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
                [b ]Department of Infectious Diseases, University of Heidelberg, Heidelberg, Germany
                [c ]Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
                [d ]Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
                [e ]Department of Chemistry, Faculty of Natural Sciences, Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
                Author notes
                Address correspondence to Lea Barfod, lea.barfod@ 123456ndm.ox.ac.uk .

                Editor Louis H. Miller, NIAID, NIH

                Article
                mBio01456-15
                10.1128/mBio.01456-15
                4611047
                26443460
                392c5beb-6146-49c3-a5ed-295aa0de393e
                Copyright © 2015 Subramani et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 August 2015
                : 28 August 2015
                Page count
                supplementary-material: 5, Figures: 6, Tables: 0, Equations: 0, References: 50, Pages: 7, Words: 6132
                Categories
                Research Article
                Custom metadata
                September/October 2015

                Life sciences
                Life sciences

                Comments

                Comment on this article