24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating citrullinated proteins in tumour cell lines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The conversion of arginine into citrulline, termed citrullination, has important consequences for the structure and function of proteins. Studies have found PADI4, an enzyme performing citrullination, to be highly expressed in a variety of malignant tumours and have shown that PADI4 participates in the process of tumorigenesis. However, as citrullinated proteins have not been systematically investigated in tumours, the present study aimed to identify novel citrullinated proteins in tumours by 2-D western blotting (2-D WB).

          Methods

          Two identical two-dimensional electrophoresis (2-DE) gels were prepared using extracts from ECA, H292, HeLa, HEPG2, Lovo, MCF-7, PANC-1, SGC, and SKOV3 tumour cell lines. The expression profiles on a 2-DE gel were trans-blotted to PVDF membranes, and the blots were then probed with an anti-citrulline antibody. By comparing the 2-DE profile with the parallel 2-D WB profile at a global level, protein spots with immuno-signals were collected from the second 2-DE gel and identified using mass spectrometry. Immunoprecipitation was used to verify the expression and citrullination of the targeted proteins in tumour cell lines.

          Results

          2-D WB and mass spectrometry identified citrullinated α-enolase (ENO1), heat shock protein 60 (HSP60), keratin 8 (KRT8), tubulin beta (TUBB), T cell receptor chain and vimentin in these cell lines. Immunoprecipitation analyses verified the expression and citrullination of ENO1, HSP60, KRT8, and TUBB in the total protein lysates of the tumour cell lines.

          Conclusions

          The citrullination of these proteins suggests a new mechanism in the tumorigenic process.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Hsp60 regulation of tumor cell apoptosis.

          Molecular chaperones may promote cell survival, but how this process is regulated, especially in cancer, is not well understood. Using high throughput proteomics screening, we identified the cell cycle regulator and apoptosis inhibitor survivin as a novel protein associated with the molecular chaperone Hsp60. Acute ablation of Hsp60 by small interfering RNA destabilizes the mitochondrial pool of survivin, induces mitochondrial dysfunction, and activates caspase-dependent apoptosis. This response involves disruption of an Hsp60-p53 complex, which results in p53 stabilization, increased expression of pro-apoptotic Bax, and Bax-dependent apoptosis. In vivo, Hsp60 is abundantly expressed in primary human tumors, as compared with matched normal tissues, and small interfering RNA ablation of Hsp60 in normal cells is well tolerated and does not cause apoptosis. Therefore, Hsp60 orchestrates a broad cell survival program centered on stabilization of mitochondrial survivin and restraining of p53 function, and this process is selectively exploited in cancer. Hsp60 inhibitors may function as attractive anticancer agents by differentially inducing apoptosis in tumor cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The protein arginine deiminases: Structure, function, inhibition, and disease.

            The post-translational modification of histones has significant effects on overall chromatin function. One such modification is citrullination, which is catalyzed by the protein arginine deiminases (PADs), a unique family of enzymes that catalyzes the hydrolysis of peptidyl-arginine to form peptidyl-citrulline on histones, fibrinogen, and other biologically relevant proteins. Overexpression and/or increased PAD activity is observed in several diseases, including rheumatoid arthritis, Alzheimer's disease, multiple sclerosis, lupus, Parkinson's disease, and cancer. This review discusses the important structural and mechanistic characteristics of the PADs, as well as recent investigations into the role of the PADs in increasing disease severity in RA and colitis and the importance of PAD activity in mediating neutrophil extracellular trap formation through chromatin decondensation. Lastly, efforts to develop PAD inhibitors with excellent potency, selectivity and in vivo efficacy are discussed, highlighting the most promising inhibitors. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 155-163, 2013. Copyright © 2012 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells.

              Mitochondrial apoptosis plays a critical role in tumor maintenance and dictates the response to therapy in vivo; however, the regulators of this process are still largely elusive. Here, we show that the molecular chaperone heat shock protein 60 (Hsp60) directly associates with cyclophilin D (CypD), a component of the mitochondrial permeability transition pore. This interaction occurs in a multichaperone complex comprising Hsp60, Hsp90, and tumor necrosis factor receptor-associated protein-1, selectively assembled in tumor but not in normal mitochondria. Genetic targeting of Hsp60 by siRNA triggers CypD-dependent mitochondrial permeability transition, caspase-dependent apoptosis, and suppression of intracranial glioblastoma growth in vivo. Therefore, Hsp60 is a novel regulator of mitochondrial permeability transition, contributing to a cytoprotective chaperone network that antagonizes CypD-dependent cell death in tumors. Copyright © 2010 AACR.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Surg Oncol
                World J Surg Oncol
                World Journal of Surgical Oncology
                BioMed Central
                1477-7819
                2013
                7 October 2013
                : 11
                : 260
                Affiliations
                [1 ]Medical Research Center of Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, Shandong 250014, P.R. China
                [2 ]Biomedical Research Center, Shandong Academy of Medical Sciences, Jingshi Road 18877, Jinan, Shandong 250062, P.R. China
                Article
                1477-7819-11-260
                10.1186/1477-7819-11-260
                3851430
                24099319
                3914fbcf-9902-44d6-81a2-903da64e736e
                Copyright © 2013 Jiang et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 July 2013
                : 27 September 2013
                Categories
                Research

                Surgery
                citrullination,peptidylarginine deiminases,tumour
                Surgery
                citrullination, peptidylarginine deiminases, tumour

                Comments

                Comment on this article