11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strength and variability of the Oligocene Southern Ocean surface temperature gradient

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large Oligocene Antarctic ice sheets co-existed with warm proximal waters offshore Wilkes Land. Here we provide a broader Southern Ocean perspective to such warmth by reconstructing the strength and variability of the Oligocene Australian-Antarctic latitudinal sea surface temperature gradient. Our Oligocene TEX 86-based sea surface temperature record from offshore southern Australia shows temperate (20–29 °C) conditions throughout, despite northward tectonic drift. A persistent sea surface temperature gradient (~5–10 °C) exists between Australia and Antarctica, which increases during glacial intervals. The sea surface temperature gradient increases from ~26 Ma, due to Antarctic-proximal cooling. Meanwhile, benthic foraminiferal oxygen isotope decline indicates ice loss/deep-sea warming. These contrasting patterns are difficult to explain by greenhouse gas forcing alone. Timing of the sea surface temperature cooling coincides with deepening of Drake Passage and matches results of ocean model experiments that demonstrate that Drake Passage opening cools Antarctic proximal waters. We conclude that Drake Passage deepening cooled Antarctic coasts which enhanced thermal isolation of Antarctica.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            An astronomically dated record of Earth’s climate and its predictability over the last 66 million years

            Much of our understanding of Earth’s past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states—Hothouse, Warmhouse, Coolhouse, Icehouse—are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Communications Earth & Environment
                Commun Earth Environ
                Springer Science and Business Media LLC
                2662-4435
                December 2022
                December 22 2022
                : 3
                : 1
                Article
                10.1038/s43247-022-00666-5
                38e91ce9-27db-4475-a8c8-9e2732b0db1d
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article