2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonlinear increase in seawater 87Sr ∕ 86Sr in the Oligocene to early Miocene and implications for climate-sensitive weathering

      , , , , ,
      Climate of the Past
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. The 87Sr / 86Sr of marine carbonates provides a key constraint on the balance of continental weathering and hydrothermal Sr fluxes to the ocean, and the mid-Oligocene to mid-Miocene period features the most rapid rates of increase in the 87Sr / 86Sr of the Cenozoic. Because previous records of the 87Sr / 86Sr increase with time were based on biostratigraphically defined age models in diverse locations, it was difficult to unambiguously distinguish million-year-scale variations in the rate of 87Sr / 86Sr change from variations in sedimentation rate. In this study, we produce the first 87Sr / 86Sr results from an Oligocene to early Miocene site with a precise age-model-derived orbital tuning of high-resolution benthic δ18O at Equatorial Pacific Ocean Drilling Program (ODP) Site 1218. Our new dataset resolves transient decreases in 87Sr / 86Sr, as well as periods of relative stasis. These changes can be directly compared with the high-resolution benthic δ18O at the same site. We find that slowing of the rate of 87Sr / 86Sr increase coincides with the onset of Antarctic ice expansion at the beginning of the mid-Oligocene glacial interval, and a rapid steeping in the 87Sr / 86Sr increase coincides with the benthic δ18O evidence for rapid ice retreat. This pattern may reflect either northward shifts in the Intertropical Convergence Zone precipitation to areas of nonradiogenic bedrock and/or lowered weathering fluxes from highly radiogenic glacial flours on Antarctica. We additionally generate the first 87Sr / 86Sr data from ODP Site 1168 on the Tasman Rise and Integrated Ocean Drilling Program (IODP) Site 1406 of the Newfoundland Margin during the Oligocene to early Miocene to improve the precision of age correlation of these Northern Hemisphere and Southern Hemisphere midlatitude sites and to better estimate the duration of early Miocene hiatus and condensed sedimentation.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            An astronomically dated record of Earth’s climate and its predictability over the last 66 million years

            Much of our understanding of Earth’s past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states—Hothouse, Warmhouse, Coolhouse, Icehouse—are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Influence of late Cenozoic mountain building on ocean geochemical cycles

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Climate of the Past
                Clim. Past
                Copernicus GmbH
                1814-9332
                2024
                January 03 2024
                : 20
                : 1
                : 25-36
                Article
                10.5194/cp-20-25-2024
                920bc210-f18c-4e3b-ba21-3552241335fc
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article