1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging

      review-article
      , , , , ,
      Nanoscale Advances
      RSC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With super strong penetrability, high-energy X-rays can be applied to probe the inner structure of target objects under nondestructive situations. Scintillation materials can down-convert X-rays into visible light, enabling the reception of photon signals and photoelectric conversion by common sensing arrays such as photomultiplier tubes and amorphous-Si photodiode matrixes. All-inorganic perovskite nanocrystals are emerging photovoltaic and scintillation materials, with tremendous light-conversion efficiency and tunable luminous properties, exhibiting great potential for high-quality X-ray imaging. Recent advancements in nanotechnology further accelerate the performance improvement of scintillation materials. In this review, we will provide a comprehensive overview of novel all-inorganic perovskite nano-scintillators in terms of potential applications in low-dose X-ray medical radiography. Compared with conventional scintillators, the merits/drawbacks, challenges, and scintillation performance control will be the focus of this article.

          Abstract

          This review summarizes the recent research progress in all-inorganic perovskite nano-scintillators in terms of their potential applications in X-ray imaging and provides references on scintillation performance control for future material design.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

          Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

            Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1–29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Surface passivation of perovskite film for efficient solar cells

                Bookmark

                Author and article information

                Journal
                Nanoscale Adv
                Nanoscale Adv
                NA
                NAADAI
                Nanoscale Advances
                RSC
                2516-0230
                30 December 2021
                1 February 2022
                30 December 2021
                : 4
                : 3
                : 680-696
                Affiliations
                [a] Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China bhuang@ 123456polyu.edu.hk
                Author information
                https://orcid.org/0000-0001-5136-7265
                https://orcid.org/0000-0002-3434-9759
                Article
                d1na00815c
                10.1039/d1na00815c
                9417099
                36131822
                3895531a-2e88-4d95-b057-6158d9cd95b6
                This journal is © The Royal Society of Chemistry
                History
                : 17 November 2021
                : 29 December 2021
                Page count
                Pages: 17
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Award ID: NSFC 21771156
                Funded by: National Key Research and Development Program of China, doi 10.13039/501100012166;
                Award ID: 2021YFA1501101
                Categories
                Chemistry
                Custom metadata
                Paginated Article

                Comments

                Comment on this article