1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation

      , , , , , ,
      Theriogenology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Extrapineal melatonin: sources, regulation, and potential functions.

          Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulatory Phenomena in the Glutathione Peroxidase Superfamily

            Significance: The selenium-containing Glutathione peroxidases (GPxs)1-4 protect against oxidative challenge, inhibit inflammation and oxidant-induced regulated cell death. Recent Advances: GPx1 and GPx4 dampen phosphorylation cascades predominantly via prevention of inactivation of phosphatases by H2O2 or lipid hydroperoxides. GPx2 regulates the balance between regeneration and apoptotic cell shedding in the intestine. It inhibits inflammation-induced carcinogenesis in the gut but promotes growth of established cancers. GPx3 deficiency facilitates platelet aggregation likely via disinhibition of thromboxane biosynthesis. It is also considered a tumor suppressor. GPx4 is expressed in three different forms. The cytosolic form proved to inhibit interleukin-1-driven nuclear factor κB activation and leukotriene biosynthesis. Moreover, it is a key regulator of ferroptosis, because it reduces hydroperoxy groups of complex lipids and silences lipoxygenases. By alternate substrate use, the nuclear form contributes to chromatin compaction. Mitochondrial GPx4 forms the mitochondrial sheath of spermatozoa and, thus, guarantees male fertility. Out of the less characterized GPxs, the cysteine-containing GPx7 and GPx8 are unique in contributing to oxidative protein folding in the endoplasmic reticulum by reacting with protein isomerase as an alternate substrate. A yeast 2-Cysteine glutathione peroxidase equipped with CP and CR was reported to sense H2O2 for inducing an adaptive response. Critical Issues: Most of the findings compiled are derived from tissue culture and/or animal studies only. Their impact on human physiology is sometimes questionable. Future Directions: The expression of individual GPxs and GPx-dependent regulatory phenomena are to be further investigated, in particular in respect to human health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger.

              Melatonin was found to be a potent free radical scavenger in 1993. Since then over 800 publications have directly or indirectly confirmed this observation. Melatonin scavenges a variety of reactive oxygen and nitrogen species including hydroxyl radical, hydrogen peroxide, singlet oxygen, nitric oxide and peroxynitrite anion. Based on the analyses of structure-activity relationships, the indole moiety of the melatonin molecule is the reactive center of interaction with oxidants due to its high resonance stability and very low activation energy barrier towards the free radical reactions. However, the methoxy and amide side chains also contribute significantly to melatonin's antioxidant capacity. The N-C=O structure in the C3 amide side chain is the functional group. The carbonyl group in the structure of N-C=O is key for melatonin to scavenge the second reactive species and the nitrogen in the N-C=O structure is necessary for melatonin to form the new five membered ring after melatonin's interaction with a reactive species. The methoxy group in C5 appears to keep melatonin from exhibiting prooxidative activity. If the methoxy group is replaced by a hydroxyl group, under some in vitro conditions, the antioxidant capacity of this molecule may be enhanced. However, the cost of this change are decreased lipophility and increased prooxidative potential. Therefore, in in vivo studies the antioxidant efficacy of melatonin appears to be superior to its hydroxylated counterpart. The mechanisms of melatonin's interaction with reactive species probably involves donation of an electron to form the melatoninyl cation radical or through an radical addition at the site C3. Other possibilities include hydrogen donation from the nitrogen atom or substitution at position C2, C4 and C7 and nitrosation. Melatonin also has the ability to repair damaged biomolecules as shown by the fact that it converts the guanosine radical to guanosine by electron transfer. Unlike the classical antioxidants, melatonin is devoid of prooxidative activity and all known intermediates generated by the interaction of melatonin with reactive species are also free radical scavengers. This phenomenon is defined as the free radical scavenging cascade reaction of the melatonin family. Due to this cascade, one melatonin molecule has the potential to scavenge up to 4 or more reactive species. This makes melatonin very effective as an antioxidant. Under in vivo conditions, melatonin is often several times more potent than vitamin C and E in protecting tissues from oxidative injury when compared at an equivalent dosage (micromol/kg). Future research in the field of melatonin as a free radical scavenger might be focused on: 1), signal transduction and antioxidant enzyme gene expression induced by melatonin and its metabolites, 2), melatonin levels in tissues and in cells, 3), melatonin structure modifications, 4), melatonin and its metabolites in plants and, 5), clinical trials using melatonin to treat free radical related diseases such as Alzheimer's, Parkinson's, stroke and heart disease.
                Bookmark

                Author and article information

                Journal
                Theriogenology
                Theriogenology
                Elsevier BV
                0093691X
                December 2022
                December 2022
                : 194
                : 133-143
                Article
                10.1016/j.theriogenology.2022.10.005
                36244270
                383f4b52-5ff8-4d9b-8c06-62feaece82bd
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article