45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Anticancer Activity of Gemcitabine in Combination with Noscapine via Antiangiogenic and Apoptotic Pathway against Non-Small Cell Lung Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The aim of this investigation was to evaluate the anticancer activity of Noscapine (Nos) and Gemcitabine (Gem) combination (NGC) against non-small cell lung cancer (NSCLC) and to elucidate the underlying mechanism of action.

          Methods

          Isobolographic method was used to calculate combination index values from cytotoxicity data. In vitro antiangiogenic and apoptotic activity of Nos, Gem and NGC was evaluated. For in vivo studies, female athymic Nu/nu mice were xenografted with H460 tumors and the efficacy of Nos, Gem, or NGC was determined. Protein expressions by immunohistochemical staining were evaluated in harvested tumor tissues.

          Results

          The CI values (<0.59) were suggestive of synergistic behavior between Nos and Gem. NGC treatment showed significantly inhibited tube formation and increased percentage of apoptotic cells. NGC, Gem and Nos treatment reduced tumor volume by 82.9±4.5 percent, 39.4±5.8 percent and 34.2±5.7 percent respectively. Specifically, NGC treatment decreased expression cell survival proteins; VEGF, CD31 staining and microvessel density and enhanced DNA fragmentation and cleaved caspase 3 levels compared to single agent treated and control groups.

          Conclusion

          Nos potentiated the anticancer activity of Gem in an additive to synergistic manner against lung cancer via antiangiogenic and apoptotic pathways. These findings suggest potential benefit for use of NGC chemotherapy for treatment of lung cancer.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses.

          Isobologram and combination index (CI) analyses are the two most popular methods for evaluating drug interactions in combination cancer chemotherapy. As the commonly used CI-based software program uses linear regression, our first objective was to evaluate the effects of logarithmic data transformation on data analysis and conclusions. Monte-Carlo simulations were conducted with experimentally relevant parameter values to generate error-containing effect or concentration-effect data of single agents and combinations. The simulated data were then analyzed with linear and nonlinear regression. The results showed that data transformation reduced the accuracy and precision of the regression-derived IC(50), curve shape parameter and CI values. Furthermore, as neither isobologram nor CI analyses provide output of concentration-effect curves for investigator evaluation, our second objective was to develop a method and the associated computer program/algorithm to (a) normalize drug concentrations in IC(50) equivalents and thereby enable simultaneous presentation of the curves for single agents and combinations in a single plot for visual inspection of potential curve shifts, (b) analyze concentration-effect data with nonlinear regression, and (c) use the curve shift analysis simultaneously with isobologram and CI analyses. The applicability of this method was shown with experimentally obtained data for single agent doxorubicin and suramin and their combinations in cultured tumor cells. In summary, this method, by incorporating nonlinear regression and curve shift analysis, although retaining the attractive features of isobologram and CI analyses, reduced the potential errors introduced by logarithmic data transformation, enabled visual inspection of data variability and goodness of fit of regression analysis, and simultaneously provided information on the extent of drug interaction at different combination ratios/concentrations and at different effect levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo.

            Gemcitabine is currently the best known chemotherapeutic option available for pancreatic cancer, but the tumor returns de novo with acquired resistance over time, which becomes a major issue for all gemcitabine-related chemotherapies. In this study, for the first time, we demonstrated that dihydroartemisinin (DHA) enhances gemcitabine-induced growth inhibition and apoptosis in both BxPC-3 and PANC-1 cell lines in vitro. The mechanism is at least partially due to DHA deactivates gemcitabine-induced NF-kappaB activation, so as to decrease tremendously the expression of its target gene products, such as c-myc, cyclin D1, Bcl-2, Bcl-xL. In our in vivo studies, gemcibabine also manifested remarkably enhanced anti-tumor effect when combined with DHA, as manifested by significantly increased apoptosis, as well as decreased Ki-67 index, NF-kappaB activity and its related gene products, and predictably, significantly reduced tumor volume. We concluded that inhibition of gemcitabine-induced NF-kappaB activation is one of the mechanisms that DHA dramatically promotes its anti-tumor effect on pancreatic cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of action of antitumor drugs that interact with microtubules and tubulin.

              T. Jordan (2001)
              Microtubules, major structural components in cells, are the target of a large and diverse group of natural product anticancer drugs. Given the success of this class of drugs in cancer treatment, it can be argued that microtubules represent the single best cancer target identified to date. Microtubules are highly dynamic assemblies of the protein tubulin. They readily polymerize and depolymerize in cells, and they undergo two interesting kinds of dynamics called dynamic instability and treadmilling. These dynamic behaviors are crucial to mitosis, the process of chromosomal division to form new cells. Microtubule dynamics are highly regulated during the cell cycle by endogenous cellular regulators. In addition, many antitumor drugs and natural compounds alter the polymerization dynamics of microtubules, blocking mitosis, and consequently, inducing cell death by apoptosis. These drugs include several that inhibit microtubule polymerization at high drug concentrations, namely, the Vinca alkaloids, cryptophycins, halichondrins, estramustine, and colchicine. Another group of these compounds stimulates microtubule polymerization and stabilizes microtubules at high concentrations. These include Taxol, Taxotere, eleutherobins, epothilones, laulimalide, sarcodictyins, and discodermolide. Importantly, considerable evidence indicates that, at lower concentrations, these drugs have a common mechanism of action; they suppress the dynamics of microtubules without appreciably changing the mass of microtubules in the cell. The drugs bind to diverse sites on tubulin and at different positions within the microtubule, and they have diverse effects on microtubule dynamics. However, by their common mechanism of suppression microtubule dynamics, they all block mitosis at the metaphase/anaphase transition, and induce cell death.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                15 November 2011
                : 6
                : 11
                : e27394
                Affiliations
                [1 ]Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii, United States of America
                [2 ]Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America
                The University of Kansas Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: MC AP MS. Performed the experiments: MC AP PS TJ. Analyzed the data: MC AP PS MS. Contributed reagents/materials/analysis tools: MS TJ. Wrote the paper: MC MS AP.

                Article
                PONE-D-11-15578
                10.1371/journal.pone.0027394
                3216931
                22102891
                38120809-8f80-4d13-8bbf-b8f1577074ec
                Chougule et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 August 2011
                : 16 October 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Immunology
                Immunologic Techniques
                Immunohistochemical Analysis
                Molecular Cell Biology
                Cell Death
                Medicine
                Clinical Immunology
                Immunologic Techniques
                Immunohistochemical Analysis
                Oncology
                Cancer Treatment
                Chemotherapy and Drug Treatment
                Cancers and Neoplasms
                Lung and Intrathoracic Tumors
                Non-Small Cell Lung Cancer
                Basic Cancer Research

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content452

                Cited by10

                Most referenced authors395