4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lung ultrasonography for assessment of oxygenation response to prone position ventilation in ARDS

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prone position (PP) improves oxygenation and outcome of acute respiratory distress syndrome (ARDS) patients with a PaO2/FiO2 ratio <150 mmHg. Regional changes in lung aeration can be assessed by lung ultrasound (LUS). Our aim was to predict the magnitude of oxygenation response after PP using bedside LUS.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries.

          Limited information exists about the epidemiology, recognition, management, and outcomes of patients with the acute respiratory distress syndrome (ARDS).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.

            Traditional approaches to mechanical ventilation use tidal volumes of 10 to 15 ml per kilogram of body weight and may cause stretch-induced lung injury in patients with acute lung injury and the acute respiratory distress syndrome. We therefore conducted a trial to determine whether ventilation with lower tidal volumes would improve the clinical outcomes in these patients. Patients with acute lung injury and the acute respiratory distress syndrome were enrolled in a multicenter, randomized trial. The trial compared traditional ventilation treatment, which involved an initial tidal volume of 12 ml per kilogram of predicted body weight and an airway pressure measured after a 0.5-second pause at the end of inspiration (plateau pressure) of 50 cm of water or less, with ventilation with a lower tidal volume, which involved an initial tidal volume of 6 ml per kilogram of predicted body weight and a plateau pressure of 30 cm of water or less. The primary outcomes were death before a patient was discharged home and was breathing without assistance and the number of days without ventilator use from day 1 to day 28. The trial was stopped after the enrollment of 861 patients because mortality was lower in the group treated with lower tidal volumes than in the group treated with traditional tidal volumes (31.0 percent vs. 39.8 percent, P=0.007), and the number of days without ventilator use during the first 28 days after randomization was greater in this group (mean [+/-SD], 12+/-11 vs. 10+/-11; P=0.007). The mean tidal volumes on days 1 to 3 were 6.2+/-0.8 and 11.8+/-0.8 ml per kilogram of predicted body weight (P<0.001), respectively, and the mean plateau pressures were 25+/-6 and 33+/-8 cm of water (P<0.001), respectively. In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prone positioning in severe acute respiratory distress syndrome.

              Previous trials involving patients with the acute respiratory distress syndrome (ARDS) have failed to show a beneficial effect of prone positioning during mechanical ventilatory support on outcomes. We evaluated the effect of early application of prone positioning on outcomes in patients with severe ARDS. In this multicenter, prospective, randomized, controlled trial, we randomly assigned 466 patients with severe ARDS to undergo prone-positioning sessions of at least 16 hours or to be left in the supine position. Severe ARDS was defined as a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (FiO2) of less than 150 mm Hg, with an FiO2 of at least 0.6, a positive end-expiratory pressure of at least 5 cm of water, and a tidal volume close to 6 ml per kilogram of predicted body weight. The primary outcome was the proportion of patients who died from any cause within 28 days after inclusion. A total of 237 patients were assigned to the prone group, and 229 patients were assigned to the supine group. The 28-day mortality was 16.0% in the prone group and 32.8% in the supine group (P<0.001). The hazard ratio for death with prone positioning was 0.39 (95% confidence interval [CI], 0.25 to 0.63). Unadjusted 90-day mortality was 23.6% in the prone group versus 41.0% in the supine group (P<0.001), with a hazard ratio of 0.44 (95% CI, 0.29 to 0.67). The incidence of complications did not differ significantly between the groups, except for the incidence of cardiac arrests, which was higher in the supine group. In patients with severe ARDS, early application of prolonged prone-positioning sessions significantly decreased 28-day and 90-day mortality. (Funded by the Programme Hospitalier de Recherche Clinique National 2006 and 2010 of the French Ministry of Health; PROSEVA ClinicalTrials.gov number, NCT00527813.).
                Bookmark

                Author and article information

                Journal
                Intensive Care Medicine
                Intensive Care Med
                Springer Science and Business Media LLC
                0342-4642
                1432-1238
                October 2016
                June 20 2016
                October 2016
                : 42
                : 10
                : 1546-1556
                Article
                10.1007/s00134-016-4411-7
                27324241
                37f33bfd-60c1-4d30-a34b-2a834c49016c
                © 2016

                Free to read

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article