11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Progressive Colonization of Bacteria and Degradation of Rice Straw in the Rumen by Illumina Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to improve the utilization of rice straw as forage in ruminants by investigating the degradation pattern of rice straw in the dairy cow rumen. Ground up rice straw was incubated in situ in the rumens of three Holstein cows over a period of 72 h. The rumen fluid at 0 h and the rice straw at 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 h were collected for analysis of the bacterial community and the degradation of the rice straw. The bacterial community and the carbohydrate-active enzymes in the rumen fluid were analyzed by metagenomics. The diversity of bacteria loosely and tightly attached to the rice straw was investigated by scanning electron microscopy and Miseq sequencing of 16S rRNA genes. The predominant genus in the rumen fluid was Prevotella, followed by Bacteroides, Butyrivibrio, unclassified Desulfobulbaceae, Desulfovibrio, and unclassified Sphingobacteriaceae. The main enzymes were members of the glycosyl hydrolase family, divided into four categories (cellulases, hemicellulases, debranching enzymes, and oligosaccharide-degrading enzymes), with oligosaccharide-degrading enzymes being the most abundant. No significant degradation of rice straw was observed between 0.5 and 6 h, whereas the rice straw was rapidly degraded between 6 and 24 h. The degradation then gradually slowed between 24 and 72 h. A high proportion of unclassified bacteria were attached to the rice straw and that Prevotella, Ruminococcus, and Butyrivibrio were the predominant classified genera in the loosely and tightly attached fractions. The composition of the loosely attached bacterial community remained consistent throughout the incubation, whereas a significant shift in composition was observed in the tightly attached bacterial community after 6 h of incubation. This shift resulted in a significant reduction in numbers of Bacteroidetes and a significant increase in numbers of Firmicutes. In conclusion, the degradation pattern of rice straw in the dairy cow rumen indicates a strong contribution by tightly attached bacteria, especially after 6 h incubation, but most of these bacteria were not taxonomically characterized. Thus, these bacteria should be further identified and subjected to functional analysis to improve the utilization of crop residues in ruminants.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria.

          The diversity of the predominant bacteria in the human gastrointestinal tract was studied by using 16S rRNA-based approaches. PCR amplicons of the V6 to V8 regions of fecal 16S rRNA and ribosomal DNA (rDNA) were analyzed by temperature gradient gel electrophoresis (TGGE). TGGE of fecal 16S rDNA amplicons from 16 individuals showed different profiles, with some bands in common. Fecal samples from two individuals were monitored over time and showed remarkably stable profiles over a period of at least 6 months. TGGE profiles derived from 16S rRNA and rDNA amplicons showed similar banding patterns. However, the intensities of bands with similar mobilities differed in some cases, indicating a different contribution to the total active fraction of the prominent fecal bacteria. Most 16S rRNA amplicons in the TGGE pattern of one subject were identified by cloning and sequence analysis. Forty-five of the 78 clones matched 15 bands, and 33 clones did not match any visible band in the TGGE pattern. Nested PCR of amplified 16S rDNA indicated preferential amplification of a sequence corresponding to 12 of the 33 nonmatching clones with similar mobilities in TGGE. The sequences matching 15 bands in the TGGE pattern showed 91.5 to 98.7% homology to sequences derived from different Clostridium clusters. Most of these were related to strains derived from the human intestine. The results indicate that the combination of cloning and TGGE analysis of 16S rDNA amplicons is a reliable approach to monitoring different microbial communities in feces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea

            A dramatic exception to the general pattern of single-copy genes in bacterial and archaeal genomes is the presence of 1–15 copies of each ribosomal RNA encoding gene. The original version of the Ribosomal RNA Database (rrnDB) cataloged estimates of the number of 16S rRNA-encoding genes; the database now includes the number of genes encoding each of the rRNAs (5S, 16S and 23S), an internally transcribed spacer region, and the number of tRNA genes. The rrnDB has been used largely by microbiologists to predict the relative rate at which microbial populations respond to favorable growth conditions, and to interpret 16S rRNA-based surveys of microbial communities. To expand the functionality of the rrnDB (http://ribosome.mmg.msu.edu/rrndb/index.php), the search engine has been redesigned to allow database searches based on 16S rRNA gene copy number, specific organisms or taxonomic subsets of organisms. The revamped database also computes average gene copy numbers for any collection of entries selected. Curation tools now permit rapid updates, resulting in an expansion of the database to include data for 785 bacterial and 69 archaeal strains. The rrnDB continues to serve as the authoritative, curated source that documents the phylogenetic distribution of rRNA and tRNA genes in microbial genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets.

              To provide a comprehensive examination of the bacterial diversity in the rumen content of cows fed different diets, high-throughput 16S rRNA gene-based pyrosequencing was used. Four rumen fistulated nonlactating Holstein cows received 12 kg of dry matter per day of four diets based on maize silage during four periods: the low-starch diet (22% starch, 3% fat); the high-starch diet, supplemented with wheat plus barley (35% starch, 3% fat); the low-starch plus oil diet, supplemented with 5% of sunflower oil (20% starch, 7.6% fat) and the high-starch plus oil diet (33% starch, 7.3% fat). Samples were taken after 12 days of adaptation, 5 h postfeeding. Whatever the diet, bacterial community of sieved rumen contents was dominated by Firmicutes and Bacteroidetes. Lachnospiraceae, Ruminococcaceae, Prevotellaceae, and Rikenellaceae families were highly present and were clearly affected by cow diet. The highest abundance of Prevotellaceae and the lowest abundance of Ruminococcaceae and Rikenellaceae were found with the high-starch plus oil diet. Dietary starch increased the relative abundance of only three genera: Barnesiella, Oribacterium and Olsenella, but decreased the relative abundances of several genera, with very significant effects for Rikenellaceae_RC9 and Butyrivibrio-Pseudobutyrivibrio. Oil alone had a limited effect, but interestingly, starch plus oil addition differently affected the bacterial populations compared to starch addition without oil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                06 November 2017
                2017
                : 8
                : 2165
                Affiliations
                [1] 1Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition , Nanjing, China
                [2] 2Departments of Microbiology and Statistics, Oregon State University , Corvallis, OR, United States
                Author notes

                Edited by: Joerg Graf, University of Connecticut, United States

                Reviewed by: Shengguo Zhao, Chinese Academy of Agricultural Sciences, China; Stephan Schmitz-Esser, Iowa State University, United States

                *Correspondence: Weiyun Zhu, zhuweiyun@ 123456njau.edu.cn

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.02165
                5681530
                29163444
                37dba896-60b5-4af7-86f7-ce30a298c784
                Copyright © 2017 Cheng, Wang, Li, Zhang, Liu, Wang, Sharpton and Zhu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 May 2017
                : 23 October 2017
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 49, Pages: 10, Words: 0
                Funding
                Funded by: Natural Science Foundation of Jiangsu Province 10.13039/501100004608
                Award ID: BK20141372
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                rice straw,fiber degradation,ruminal bacteria,carbohydrate-active enzymes,metagenome

                Comments

                Comment on this article