75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets.

      Fems Microbiology Ecology
      Animals, Bacteria, classification, genetics, isolation & purification, Biodiversity, Cattle, Dietary Supplements, Female, Plant Oils, administration & dosage, pharmacology, Rumen, microbiology, Sequence Analysis, DNA, Silage, Starch, Zea mays

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To provide a comprehensive examination of the bacterial diversity in the rumen content of cows fed different diets, high-throughput 16S rRNA gene-based pyrosequencing was used. Four rumen fistulated nonlactating Holstein cows received 12 kg of dry matter per day of four diets based on maize silage during four periods: the low-starch diet (22% starch, 3% fat); the high-starch diet, supplemented with wheat plus barley (35% starch, 3% fat); the low-starch plus oil diet, supplemented with 5% of sunflower oil (20% starch, 7.6% fat) and the high-starch plus oil diet (33% starch, 7.3% fat). Samples were taken after 12 days of adaptation, 5 h postfeeding. Whatever the diet, bacterial community of sieved rumen contents was dominated by Firmicutes and Bacteroidetes. Lachnospiraceae, Ruminococcaceae, Prevotellaceae, and Rikenellaceae families were highly present and were clearly affected by cow diet. The highest abundance of Prevotellaceae and the lowest abundance of Ruminococcaceae and Rikenellaceae were found with the high-starch plus oil diet. Dietary starch increased the relative abundance of only three genera: Barnesiella, Oribacterium and Olsenella, but decreased the relative abundances of several genera, with very significant effects for Rikenellaceae_RC9 and Butyrivibrio-Pseudobutyrivibrio. Oil alone had a limited effect, but interestingly, starch plus oil addition differently affected the bacterial populations compared to starch addition without oil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article