Temporomandibular joint osteoarthritis (TMJOA) is an inflammatory joint disease. This study investigated whether exosomes (Exos) of stem cells from human exfoliated deciduous teeth (SHEDs) have a therapeutic effect on TMJ inflammation and elucidated the underlying mechanisms.
SHEDs were verified by flow cytometry. SHED-Exos were identified by western blotting, nanoparticle tracking analysis, and transmission electron microscopy. Western blot and RT-qPCR were performed to verify the anti-inflammatory effects of SHED-Exos. MicroRNA (miRNA) array analysis was conducted to determine the miRNA expression profiles of SHED-Exos, and the key pathways were analyzed. After chondrocytes were treated with an miR-100-5p mimic or rapamycin, relative expression of genes was measured by RT-qPCR and western blotting. A luciferase reporter assay was performed to reveal the molecular role of the exosomal miR-100 target, mTOR.
MiR-100-5p was enriched in the SHED-Exos. Treatment with SHED-Exos suppressed the expression of interleukin-6 (IL-6), IL-8, matrix metalloproteinase 1 (MMP1), MMP3, MMP9, MMP13, and disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). Chondrocytes treated with the miR-100 mimic showed lower expression of MMP1, MMP9, MMP13, ADAMTS5, and mTOR. In contrast, miR-100 downregulation upregulated the MMPs and mTOR. Rapamycin treatment upregulated miR-100 and downregulated MMPs and ADAMTS5. Furthermore, the luciferase reporter assay demonstrated that miR-100-5p directly targeted the mTOR 3′ untranslated region and that SHED-Exos miR-100-5p repressed mTOR expression.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.