94
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exosomes from Dendritic Cells Loaded with Chaperone-Rich Cell Lysates Elicit a Potent T Cell Immune Response Against Intracranial Glioma in Mice.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chaperone-rich cell lysates (CRCLs) may play an important role in the development of anti-tumor vaccines. Tumor-derived CRCLs have been reported to activate dendritic cells (DCs) to elicit potent anti-tumor activity. However, the role of DC-derived exosomes (DEXs) secreted from DCs loaded with CRCLs in the treatment of tumors has not been clearly determined. In the present study, DEXs were generated from DCs loaded with CRCLs derived from GL261 glioma cells. These DEXs, designated DEX (CRCL-GL261), were then used to treat DCs to create DEX (CRCL-GL261)-DCs. The DEX (CRCL-GL261)-DCs were found to promote cell proliferation and cytotoxic T lymphocyte (CTL) activity of CD4(+) and CD8(+) T cells in vitro compared with DEX (GL261)-DCs, which were loaded with DEXs derived from DCs loaded with GL261 tumor cell lysates. DEX (CRCL-GL261)-DCs significantly prolonged the survival of mice with tumors and inhibited tumor growth in vivo. In addition, DEX (CRCL-GL261)-DCs induced enhanced T cell infiltration in intracranial glioma tissues compared with other treatments. DEX (CRCL-GL261)-DCs induced strong production of anti-tumor cytokines, including interleukin-2 and interferon-γ. Moreover, depletion of CD4(+) and CD8(+) T cells significantly impaired the anti-tumor effect of DEX (CRCL-GL261)-DCs. Finally, DEX (CRCL-GL261)-DCs were found to negatively regulate Casitas B cell lineage lymphoma (Cbl)-b and c-Cbl signaling, leading to the activation of phosphatidyl inositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) signaling in T cells. In summary, we present evidence that DEX (CRCL-GL261)-DCs induce more potent and effective anti-tumor T cell immune responses and delineate the underlying mechanism by which DEX (CRCL-GL261)-DCs exerted their anti-tumor activity through modulating Cbl-b and c-Cbl signaling. These results provide novel and promising insight for the development of an anti-tumor vaccine.

          Related collections

          Author and article information

          Journal
          J. Mol. Neurosci.
          Journal of molecular neuroscience : MN
          1559-1166
          0895-8696
          Jul 2015
          : 56
          : 3
          Affiliations
          [1 ] Department of Neurology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China, ningbuxa@163.com.
          Article
          10.1007/s12031-015-0506-9
          25680514
          377b9c1b-9249-450b-abbe-84eeaa2ff6fd
          History

          Comments

          Comment on this article