97
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying miRNAs, targets and functions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          microRNAs (miRNAs) are small endogenous non-coding RNAs that function as the universal specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets and further inferring miRNA functions have been a critical strategy for understanding normal biological processes of miRNAs and their roles in the development of disease. In this review, we focus on computational methods of inferring miRNA functions, including miRNA functional annotation and inferring miRNA regulatory modules, by integrating heterogeneous data sources. We also briefly introduce the research in miRNA discovery and miRNA-target identification with an emphasis on the challenges to computational biology.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of mammalian microRNA targets.

          MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites

            mirSVR is a new machine learning method for ranking microRNA target sites by a down-regulation score. The algorithm trains a regression model on sequence and contextual features extracted from miRanda-predicted target sites. In a large-scale evaluation, miRanda-mirSVR is competitive with other target prediction methods in identifying target genes and predicting the extent of their downregulation at the mRNA or protein levels. Importantly, the method identifies a significant number of experimentally determined non-canonical and non-conserved sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              miRecords: an integrated resource for microRNA–target interactions

              MicroRNAs (miRNAs) are an important class of small noncoding RNAs capable of regulating other genes’ expression. Much progress has been made in computational target prediction of miRNAs in recent years. More than 10 miRNA target prediction programs have been established, yet, the prediction of animal miRNA targets remains a challenging task. We have developed miRecords, an integrated resource for animal miRNA–target interactions. The Validated Targets component of this resource hosts a large, high-quality manually curated database of experimentally validated miRNA–target interactions with systematic documentation of experimental support for each interaction. The current release of this database includes 1135 records of validated miRNA–target interactions between 301 miRNAs and 902 target genes in seven animal species. The Predicted Targets component of miRecords stores predicted miRNA targets produced by 11 established miRNA target prediction programs. miRecords is expected to serve as a useful resource not only for experimental miRNA researchers, but also for informatics scientists developing the next-generation miRNA target prediction programs. The miRecords is available at http://miRecords.umn.edu/miRecords.
                Bookmark

                Author and article information

                Journal
                Brief Bioinform
                Brief. Bioinformatics
                bib
                bib
                Briefings in Bioinformatics
                Oxford University Press
                1467-5463
                1477-4054
                January 2014
                22 November 2012
                22 November 2012
                : 15
                : 1
                : 1-19
                Author notes
                Corresponding author. Murray J. Cairns, School of Biomedical Sciences and Pharmacy, The University of Newcastle, University Drive, Callaghan NSW 2308, Australia. Tel: +61 2 4921 8670; Fax: +61 2 4921 7903; E-mail: murray.cairns@ 123456newcastle.edu.au
                Article
                bbs075
                10.1093/bib/bbs075
                3896928
                23175680
                36ada070-bc1d-4d04-b1ae-3c1bb6800586
                © The Author 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 11 August 2012
                : 27 September 2012
                Page count
                Pages: 19
                Categories
                Papers

                Bioinformatics & Computational biology
                functional annotation,mirna,functional mirna–mrna regulatory modules

                Comments

                Comment on this article