6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Discovery of a Potent Class of PI3Kα Inhibitors with Unique Binding Mode via Encoded Library Technology (ELT)

      rapid-communication

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Drugs for bad bugs: confronting the challenges of antibacterial discovery.

          The sequencing of the first complete bacterial genome in 1995 heralded a new era of hope for antibacterial drug discoverers, who now had the tools to search entire genomes for new antibacterial targets. Several companies, including GlaxoSmithKline, moved back into the antibacterials area and embraced a genomics-derived, target-based approach to screen for new classes of drugs with novel modes of action. Here, we share our experience of evaluating more than 300 genes and 70 high-throughput screening campaigns over a period of 7 years, and look at what we learned and how that has influenced GlaxoSmithKline's antibacterials strategy going forward.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine.

            The specific phosphoinositide 3-kinase (PI3K) inhibitors wortmannin and LY294002 have been invaluable tools for elucidating the roles of these enzymes in signal transduction pathways. The X-ray crystallographic structures of PI3Kgamma bound to these lipid kinase inhibitors and to the broad-spectrum protein kinase inhibitors quercetin, myricetin, and staurosporine reveal how these compounds fit into the ATP binding pocket. With a nanomolar IC50, wortmannin most closely fits and fills the active site and induces a conformational change in the catalytic domain. Surprisingly, LY294002 and the lead compound on which it was designed, quercetin, as well as the closely related flavonoid myricetin bind PI3K in remarkably different orientations that are related to each other by 180 degrees rotations. Staurosporine/PI3K interactions are reminiscent of low-affinity protein kinase/staurosporine complexes. These results provide a rich basis for development of isoform-specific PI3K inhibitors with therapeutic potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer .

              Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.
                Bookmark

                Author and article information

                Journal
                ACS Med Chem Lett
                ACS Med Chem Lett
                ml
                amclct
                ACS Medicinal Chemistry Letters
                American Chemical Society
                1948-5875
                20 March 2015
                14 May 2015
                20 March 2015
                : 6
                : 5
                : 531-536
                Affiliations
                []MDR (Molecular Discovery Research) Boston, Platform Technology and Science, GlaxoSmithKline , 830 Winter Street, Waltham, Massachusetts 02451, United States
                [2.0] Computational and Structural Chemistry, Platform Technology and Science, §Biological Reagents and Assay Development, Platform Technology and Science, Oncology Research, and Screening and Compound Profiling, Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
                Author notes
                Article
                10.1021/acsmedchemlett.5b00025
                4434457
                26005528
                369863f5-2907-4866-91bd-f40d535f30dc
                Copyright © 2015 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 19 January 2015
                : 20 March 2015
                Categories
                Letter
                Custom metadata
                ml5b00025
                ml-2015-000252

                Pharmaceutical chemistry
                encoded library technology,elt,pi3kα,p110α,pi3k p110α (h1047r)
                Pharmaceutical chemistry
                encoded library technology, elt, pi3kα, p110α, pi3k p110α (h1047r)

                Comments

                Comment on this article