14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiological and Pathological Functions of SLC26A6

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Solute Carrier Family 26 (SLC26) is a conserved anion transporter family with 10 members in human (SLC26A1-A11, A10 being a pseudogene). All SLC26 genes except for SLC26A5 (prestin) are versatile anion exchangers with notable ability to transport a variety of anions. SLC26A6 has the most extensive exchange functions in the SLC26 family and is widely expressed in various organs and tissues of mammals. SLC26A6 has some special properties that make it play a particularly important role in ion homeostasis and acid-base balance. In the past few years, the function of SLC26A6 in the diseases has received increasing attention. SLC26A6 not only participates in the development of intestinal and pancreatic diseases but also serves a significant role in mediating nephrolithiasis, fetal skeletal dysplasia and arrhythmia. This review aims to explore the role of SLC26A6 in physiology and pathophysiology of relative mammalian organs to guide in-depth studies about related diseases of human.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: not found

          Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS).

          Pendred syndrome is a recessively inherited disorder with the hallmark features of congenital deafness and thyroid goitre. By some estimates, the disorder may account for upwards of 10% of hereditary deafness. Previous genetic linkage studies localized the gene to a broad interval on human chromosome 7q22-31.1. Using a positional cloning strategy, we have identified the gene (PDS) mutated in Pendred syndrome and found three apparently deleterious mutations, each segregating with the disease in the respective families in which they occur. PDS produces a transcript of approximately 5 kb that was found to be expressed at significant levels only in the thyroid. The predicted protein, pendrin, is closely related to a number of known sulphate transporters. These studies provide compelling evidence that defects in pendrin cause Pendred syndrome thereby launching a new area of investigation into thyroid physiology, the pathogenesis of congenital deafness and the role of altered sulphate transport in human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transport of lactate and other monocarboxylates across mammalian plasma membranes.

            Transport of L-lactate across the plasma membrane is of considerable importance to almost all mammalian cells. In most cells a specific H(+)-monocarboxylate cotransporter is largely responsible for this process; the capacity of this carrier is usually very high, to support the high rates of production or utilization of L-lactate. The best characterized H(+)-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a wide range of other aliphatic monocarboxylates, including pyruvate and the ketone bodies acetoacetate and beta-hydroxybutyrate. This carrier is inhibited by alpha-cyanocinnamate derivatives and some stilbene disulfonates and has been identified as a protein of 35-50 kDa on the basis of purification and specific labeling experiments. Other cells possess similar alpha-cyanocinnamate-sensitive H(+)-linked monocarboxylate transporters, but in some cases there are significant differences in the properties of these systems, sufficient to suggest the existence of a family of such carriers. In particular, cardiac muscle and tumor cells have transporters that differ in their Km values for certain substrates (including stereoselectivity for L- over D-lactate) and in their sensitivity to inhibitors. Mitochondria, bacteria, and yeast also possess H(+)-monocarboxylate transporters that share some properties in common with those in the mammalian plasma membrane but are adapted to their specific roles. However, there are distinct Na(+)-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which enable active uptake of lactate, pyruvate, and ketone bodies in these tissues. This article reviews the properties of these transport systems and their role in mammalian metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cellular mechanisms of neuronal swelling underlying cytotoxic edema.

              Cytotoxic brain edema triggered by neuronal swelling is the chief cause of mortality following brain trauma and cerebral infarct. Using fluorescence lifetime imaging to analyze contributions of intracellular ionic changes in brain slices, we find that intense Na(+) entry triggers a secondary increase in intracellular Cl(-) that is required for neuronal swelling and death. Pharmacological and siRNA-mediated knockdown screening identified the ion exchanger SLC26A11 unexpectedly acting as a voltage-gated Cl(-) channel that is activated upon neuronal depolarization to membrane potentials lower than -20 mV. Blockade of SLC26A11 activity attenuates both neuronal swelling and cell death. Therefore cytotoxic neuronal edema occurs when sufficient Na(+) influx and depolarization is followed by Cl(-) entry via SLC26A11. The resultant NaCl accumulation causes subsequent neuronal swelling leading to neuronal death. These findings shed light on unique elements of volume control in excitable cells and lay the ground for the development of specific treatments for brain edema.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                21 January 2021
                2020
                : 7
                : 618256
                Affiliations
                [1] 1Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University , Zunyi, China
                [2] 2Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi City), Zunyi Medical University , Zunyi, China
                Author notes

                Edited by: Ihsan Ullah, Khyber Medical University, Pakistan

                Reviewed by: Serenella Anzilotti, Institute of Research and Medical Care (IRCCS) SDN, Italy; Deepthi Rao, University of Missouri, United States

                *Correspondence: Biguang Tuo tuobiguang@ 123456aliyun.com

                This article was submitted to Pathology, a section of the journal Frontiers in Medicine

                †These authors have contributed equally to this work

                Article
                10.3389/fmed.2020.618256
                7859274
                33553213
                367dfe48-828e-4441-9748-31b497f95c46
                Copyright © 2021 Wang, Wang, Wang and Tuo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 October 2020
                : 30 December 2020
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 130, Pages: 13, Words: 9101
                Categories
                Medicine
                Review

                slc26a6,pancreas,intestine,kidney,heart,placenta
                slc26a6, pancreas, intestine, kidney, heart, placenta

                Comments

                Comment on this article