36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.

          Related collections

          Most cited references346

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutathione peroxidases.

            With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls.

                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                17 January 2017
                11 December 2016
                : 8
                : 3
                : 3895-3932
                Affiliations
                1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
                2 Inserm U1052, Cancer Research Center Lyon, University of Lyon, Lyon, France
                3 DevWeCan Laboratories of Excellence Network, France
                4 Riga Stradins University, Riga, Latvia
                5 Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
                Author notes
                Correspondence to: Alexander V. Ivanov, aivanov@ 123456yandex.ru
                Article
                13904
                10.18632/oncotarget.13904
                5354803
                27965466
                35c0dc38-1571-4457-a164-d63aba6f2fd3
                Copyright: © 2017 Ivanov et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 July 2016
                : 5 December 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                hepatitis c virus,hepatitis b virus,reactive oxygen species,pathogenesis,carcinogenesis

                Comments

                Comment on this article