66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca 2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca 2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          The inflammasomes: guardians of the body.

          The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            JNK signaling in apoptosis.

            Jun N-terminal kinases or JNKs play a critical role in death receptor-initiated extrinsic as well as mitochondrial intrinsic apoptotic pathways. JNKs activate apoptotic signaling by the upregulation of pro-apoptotic genes through the transactivation of specific transcription factors or by directly modulating the activities of mitochondrial pro- and antiapoptotic proteins through distinct phosphorylation events. This review analyses our present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ubiquitin signalling in the NF-kappaB pathway.

              The transcription factor NF-kappaB (nuclear factor kappa enhancer binding protein) controls many processes, including immunity, inflammation and apoptosis. Ubiquitination regulates at least three steps in the NF-kappaB pathway: degradation of IkappaB (inhibitor of NF-kappaB), processing of NF-kappaB precursors, and activation of the IkappaB kinase (IKK). Recent studies have revealed several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2009
                26 December 2009
                : 6
                : 41
                Affiliations
                [1 ]Department of Neurology, Institute of Clinical Medicine, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
                [2 ]Department of Neurology, University Hospital of Kuopio, PO Box 1777, FIN-70211 Kuopio, Finland
                [3 ]Department of Ophthalmology, Institute of Clinical Medicine, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
                [4 ]Department of Ophthalmology, University Hospital of Kuopio, PO Box 1777, FIN-70211 Kuopio, Finland
                Article
                1742-2094-6-41
                10.1186/1742-2094-6-41
                2806266
                20035627
                dd2b70f4-a975-465b-a884-6a51c4c32566
                Copyright ©2009 Salminen et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 December 2009
                : 26 December 2009
                Categories
                Review

                Neurosciences
                Neurosciences

                Comments

                Comment on this article