1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Adenomatous Polyposis Coli Loss on Tumorigenic Potential in Pancreatic Ductal Adenocarcinoma

      research-article
      1 , 2 , 2 , 3 , 1 , 2 , 3 , *
      Cells
      MDPI
      PDAC, APC, proliferation, migration, gemcitabine

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Loss of the Adenomatous Polyposis Coli ( APC) tumor suppressor in colorectal cancer elicits rapid signaling through the Wnt/β-catenin signaling pathway. In contrast to this well-established role of APC, recent studies from our laboratory demonstrated that APC functions through Wnt-independent pathways to mediate in vitro and in vivo models of breast tumorigenesis. Pancreatic ductal adenocarcinoma (PDAC) has an overall median survival of less than one year with a 5-year survival rate of 7.2%. APC is lost in a subset of pancreatic cancers, but the impact on Wnt signaling or tumor development is unclear. Given the lack of effective treatment strategies for pancreatic cancer, it is important to understand the functional implications of APC loss in pancreatic cancer cell lines. Therefore, the goal of this project is to study how APC loss affects Wnt pathway activation and in vitro tumor phenotypes. Using lentiviral shRNA, we successfully knocked down APC expression in six pancreatic cancer cell lines (AsPC-1, BxPC3, L3.6pl, HPAF-II, Hs 766T, MIA PaCa-2). No changes were observed in localization of β-catenin or reporter assays to assess β-catenin/TCF interaction. Despite this lack of Wnt/β-catenin pathway activation, the majority of APC knockdown cell lines exhibit an increase in cell proliferation. Cell migration assays showed that the BxPC-3 and L3.6pl cells were impacted by APC knockdown, showing faster wound healing in scratch wound assays. Interestingly, APC knockdown had no effect on gemcitabine treatment, which is the standard care for pancreatic cancer. It is important to understand the functional implications of APC loss in pancreatic cancer cells lines, which could be used as a target for therapeutics.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer.

          A better understanding of drug resistance mechanisms is required to improve outcomes in patients with pancreatic cancer. Here, we characterized patterns of sensitivity and resistance to three conventional chemotherapeutic agents with divergent mechanisms of action [gemcitabine, 5-fluorouracil (5-FU), and cisplatin] in pancreatic cancer cells. Four (L3.6pl, BxPC-3, CFPAC-1, and SU86.86) were sensitive and five (PANC-1, Hs766T, AsPC-1, MIAPaCa-2, and MPanc96) were resistant to all three agents based on GI(50) (50% growth inhibition). Gene expression profiling and unsupervised hierarchical clustering revealed that the sensitive and resistant cells formed two distinct groups and differed in expression of specific genes, including several features of "epithelial to mesenchymal transition" (EMT). Interestingly, an inverse correlation between E-cadherin and its transcriptional suppressor, Zeb-1, was observed in the gene expression data and was confirmed by real-time PCR. Independent validation experiment using five new pancreatic cancer cell lines confirmed that an inverse correlation between E-cadherin and Zeb-1 correlated closely with resistance to gemcitabine, 5-FU, and cisplatin. Silencing Zeb-1 in the mesenchymal lines not only increased the expression of E-cadherin but also other epithelial markers, such as EVA1 and MAL2, and restored drug sensitivity. Importantly, immunohistochemical analysis of E-cadherin and Zeb-1 in primary tumors confirmed that expression of the two proteins was mutually exclusive (P = 0.012). Therefore, our results suggest that Zeb-1 and other regulators of EMT may maintain drug resistance in human pancreatic cancer cells, and therapeutic strategies to inhibit Zeb-1 and reverse EMT should be evaluated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration.

            Although Apc is well characterized as a tumor-suppressor gene in the intestine, the precise mechanism of this suppression remains to be defined. Using a novel inducible Ahcre transgenic line in conjunction with a loxP-flanked Apc allele we, show that loss of Apc acutely activates Wnt signaling through the nuclear accumulation of beta-catenin. Coincidentally, it perturbs differentiation, migration, proliferation, and apoptosis, such that Apc-deficient cells maintain a "crypt progenitor-like" phenotype. Critically, for the first time we confirm a series of Wnt target molecules in an in vivo setting and also identify a series of new candidate targets within the same setting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays.

              Cell migration plays a major role in development, physiology, and disease, and is frequently evaluated in vitro by the monolayer wound healing assay. The assay analysis, however, is a time-consuming task that is often performed manually. In order to accelerate this analysis, we have developed TScratch, a new, freely available image analysis technique and associated software tool that uses the fast discrete curvelet transform to automate the measurement of the area occupied by cells in the images. This tool helps to significantly reduce the time needed for analysis and enables objective and reproducible quantification of assays. The software also offers a graphical user interface which allows easy inspection of analysis results and, if desired, manual modification of analysis parameters. The automated analysis was validated by comparing its results with manual-analysis results for a range of different cell lines. The comparisons demonstrate a close agreement for the vast majority of images that were examined and indicate that the present computational tool can reproduce statistically significant results in experiments with well-known cell migration inhibitors and enhancers.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                14 September 2019
                September 2019
                : 8
                : 9
                : 1084
                Affiliations
                [1. ]Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA; jennifermichelecole@ 123456gmail.com
                [2. ]Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA; ksimmon1@ 123456alumni.nd.edu
                [3. ]Department of Biological Sciences at University of Notre Dame, South Bend, IN 46617, USA
                Author notes
                [* ]Correspondence: jrprospe@ 123456iupui.edu ; Tel.: +1-574-631-4002, Fax: +1-574-631-8932
                Article
                cells-08-01084
                10.3390/cells8091084
                6770120
                31540078
                35a029b0-b4b2-4700-8f0f-ea349c77e71f
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 August 2019
                : 11 September 2019
                Categories
                Article

                pdac,apc,proliferation,migration,gemcitabine
                pdac, apc, proliferation, migration, gemcitabine

                Comments

                Comment on this article