61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7 th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements.

          For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Cholera.

          Despite more than a century of study, cholera still presents challenges and surprises to us. Throughout most of the 20th century, cholera was caused by Vibrio cholerae of the O1 serogroup and the disease was largely confined to Asia and Africa. However, the last decade of the 20th century has witnessed two major developments in the history of this disease. In 1991, a massive outbreak of cholera started in South America, the one continent previously untouched by cholera in this century. In 1992, an apparently new pandemic caused by a previously unknown serogroup of V. cholerae (O139) began in India and Bangladesh. The O139 epidemic has been occurring in populations assumed to be largely immune to V. cholerae O1 and has rapidly spread to many countries including the United States. In this review, we discuss all aspects of cholera, including the clinical microbiology, epidemiology, pathogenesis, and clinical features of the disease. Special attention will be paid to the extraordinary advances that have been made in recent years in unravelling the molecular pathogenesis of this infection and in the development of new generations of vaccines to prevent it.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae.

            Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the sixth and the current seventh pandemics, respectively. Cholera researchers continually face newly emerging and reemerging pathogenic clones carrying diverse combinations of phenotypic and genotypic properties, which significantly hampered control of the disease. To elucidate evolutionary mechanisms governing genetic diversity of pandemic V. cholerae, we compared the genome sequences of 23 V. cholerae strains isolated from a variety of sources over the past 98 years. The genome-based phylogeny revealed 12 distinct V. cholerae lineages, of which one comprises both O1 classical and El Tor biotypes. All seventh pandemic clones share nearly identical gene content. Using analogy to influenza virology, we define the transition from sixth to seventh pandemic strains as a "shift" between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages. In contrast, transition among clones during the present pandemic period is characterized as a "drift" between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V. cholerae O139 and V. cholerae O1 El Tor hybrid clones. Based on the comparative genomics it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V. cholerae clones.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing.

              Antimicrobial susceptibility testing of bacterial isolates is essential for clinical diagnosis, to detect emerging problems and to guide empirical treatment. Current phenotypic procedures are sometimes associated with mistakes and may require further genetic testing. Whole-genome sequencing (WGS) may soon be within reach even for routine surveillance and clinical diagnostics. The aim of this study was to evaluate WGS as a routine tool for surveillance of antimicrobial resistance compared with current phenotypic procedures. Antimicrobial susceptibility tests were performed on 200 isolates originating from Danish pigs, covering four bacterial species. Genomic DNA was purified from all isolates and sequenced as paired-end reads on the Illumina platform. The web servers ResFinder and MLST (www.genomicepidemiology.org) were used to identify acquired antimicrobial resistance genes and MLST types (where MLST stands for multilocus sequence typing). ResFinder results were compared with phenotypic antimicrobial susceptibility testing results using EUCAST epidemiological cut-off values and MLST types. A total of 3051 different phenotypic tests were performed; 482 led to the categorizing of isolates as resistant and 2569 as susceptible. Seven cases of disagreement between tested and predicted susceptibility were observed, six of which were related to spectinomycin resistance in Escherichia coli. Correlation between MLST type and resistance profiles was only observed in Salmonella Typhimurium, where isolates belonging to sequence type (ST) 34 were more resistant than ST19 isolates. High concordance (99.74%) between phenotypic and predicted antimicrobial susceptibility was observed. Thus, antimicrobial resistance testing based on WGS is an alternative to conventional phenotypic methods.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                19 January 2017
                2017
                : 12
                : 1
                : e0169324
                Affiliations
                [1 ]Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
                [2 ]National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
                [3 ]Faculty of Public Health, Thammasat University, Rangsit Center, Pathumthani, Thailand
                Midwestern University, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceptualization: OS CT RSH FMA.

                • Data curation: PL.

                • Formal analysis: AS PL.

                • Funding acquisition: FMA OS RSH.

                • Investigation: AS RSH PL.

                • Methodology: RSH PL AS RSK.

                • Project administration: RSH.

                • Resources: FMA.

                • Software: AS PL RSK.

                • Supervision: RSH OS CT PL.

                • Validation: RSH OS.

                • Visualization: AS PL.

                • Writing – original draft: AS.

                • Writing – review & editing: RSH PL.

                Article
                PONE-D-16-25723
                10.1371/journal.pone.0169324
                5245877
                28103259
                3569bca5-c881-4f44-91a4-99181d967695
                © 2017 Siriphap et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 July 2016
                : 15 December 2016
                Page count
                Figures: 3, Tables: 3, Pages: 17
                Funding
                Funded by: Strategiske Forskningsråd (DK)
                Award ID: 09-067103
                Award Recipient :
                This work was supported in part by Department of Microbiology grant, the China Medical Board, the Faculty of Public Health of Mahidol University to Orasa Sutheinkul, the Danish Council for Strategic Research (grant number 09-067103) to Frank M. Aarestrup, and in part by the World Health Organization Global Food-borne Infections Network and World Health Organization, Food Safety Office (WP-12-FOS-003342) to Rene S. Hendriksen. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Vibrio Cholerae
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Vibrio Cholerae
                Biology and Life Sciences
                Organisms
                Bacteria
                Vibrio
                Vibrio Cholerae
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobial Resistance
                Medicine and Health Sciences
                Pharmacology
                Antimicrobial Resistance
                Medicine and health sciences
                Infectious diseases
                Bacterial diseases
                El Tor
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Cholera
                Medicine and Health Sciences
                Tropical Diseases
                Neglected Tropical Diseases
                Cholera
                People and Places
                Geographical Locations
                Asia
                Thailand
                Research and Analysis Methods
                Database and Informatics Methods
                Biological Databases
                Genomic Databases
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Genomic Databases
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Genomic Databases
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Custom metadata
                All sequence data have been submitted to the European Nucleotide Archive under study accession number: PRJEB14630 ( http://www.ebi.ac.uk/ena/data/view/PRJEB14630).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content167

                Cited by43

                Most referenced authors1,150