17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-361-3p suppresses tumor cell proliferation and metastasis by directly targeting SH2B1 in NSCLC

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lung cancer is the most common malignancies worldwide. However, the detailed molecular mechanisms underlying lung cancer progression are still not completely clear. MicroRNAs are small noncoding RNAs which occupy a crucial role of cancer metastasis. Accumulating evidence suggests that miR-361 plays important roles in human carcinogenesis. However, its precise biological role remains largely elusive, especially in lung cancer. This study examined the role of miR-361-3p in non-small cell lung cancer (NSCLC).

          Methods

          Real-time quantitative PCR (qRT-PCR) was used to analyze the expression of miR-361-3p in NSCLC tissue and in compared adjacent non-cancerous tissues. The effect of miR-361-3p on proliferation was evaluated by CCK8 and colony formation assays. The effect of miR-361-3p on migration and invasion was evaluated by transwell assays. Western blotting and immunohistochemical staining were applied to analyze the expression of target proteins and downstream molecule, and the luciferase reporter assay to assess the target genes of miR-361-3p in non-small cell lung cancer cells.

          Results

          miR-361-3p was significantly decreased in NSCLC tissue and cell lines, and its expression levels were highly correlated with lymph node metastasis ( P < 0.01) and TNM stages ( P < 0.05). Down-regulation of miR-361-3p promoted cell growth, proliferation, colony formation, invasion and migration in vitro, and promoted proliferation and metastasis in vivo ( P < 0.01); whereas up-regulation of miR-361-3p had the contrary effects. The luciferase reporter assay showed that SH2B1 was a direct target gene of miR-361-3p. Enforced expression of miR-361-3p inhibited the expression of SH2B1 significantly and the restoration of SH2B1 expression reversed the inhibitory effects of miR-361-3p on NSCLC cell proliferation and metastasis.

          Conclusions

          miR-361-3p functions as a novel tumor suppressor in NSCLC and the anti-oncogenic activity may involve its inhibition of the target gene SH2B1. These findings suggest the possibility for miR-361-3p as a therapeutic target in NSCLC.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.

          MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.

            During C. elegans development, the temporal pattern of many cell lineages is specified by graded activity of the heterochronic gene Lin-14. Here we demonstrate that a temporal gradient in Lin-14 protein is generated posttranscriptionally by multiple elements in the lin-14 3'UTR that are regulated by the heterochronic gene Lin-4. The lin-14 3'UTR is both necessary and sufficient to confer lin-4-mediated posttranscriptional temporal regulation. The function of the lin-14 3'UTR is conserved between C. elegans and C. briggsae. Among the conserved sequences are seven elements that are each complementary to the lin-4 RNAs. A reporter gene bearing three of these elements shows partial temporal gradient activity. These data suggest a molecular mechanism for Lin-14p temporal gradient formation: the lin-4 RNAs base pair to sites in the lin-14 3'UTR to form multiple RNA duplexes that down-regulate lin-14 translation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC).

              MicroRNAs (miRNAs) are a class of small non-coding RNAs regulating gene expression that play roles in the pathogenesis of human diseases, including malignancy. miR-21, a commonly overexpressed miRNA in very diverse types of malignancies, may affect tumor progression through targeting tumor suppressor genes. We identified the role of miR-21 in non-small cell lung cancer (NSCLC) and to clarify the regulation of PTEN by miR-21 and determine mechanisms of this regulation. Expression of miR-21 and PTEN in 20 paired NSCLC and adjacent non-tumor lung tissues was investigated by qRT-PCR and western blot, respectively. The effect of miR-21 on PTEN expression was assessed in NSCLC cell lines with miR-21 inhibitor to decrease miR-21 expression. Furthermore, the roles of miR-21 in cell growth and invasion were analyzed with miR-21 inhibitor-transfected cells. miR-21 was overexpressed in tumor tissues relative to adjacent non-tumor tissues. Notably, patients with advanced clinical TNM stage (n=16) or distal metastasis (n=5) demonstrated higher miR-21 expression than those without them (n=26, or n=37) (p<0.05, or p<0.001). Tumor tissues showed an inverse correlation between miR-21 and PTEN protein. miR-21 inhibitor transfection increased a luciferase-reporter activity containing the PTEN-3'-UTR construct and increased PTEN protein but not PTEN-mRNA levels in NSCLC cell lines. Finally, miR-21 inhibitor-transfected cells exhibited markedly reduced cell growth and invasive characteristics. miR-21 post-transcriptionally down-regulates the expression of tumor suppressor PTEN and stimulates growth and invasion in NSCLC. It may be a potential therapeutic target for NSCLC. Copyright 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                +8613807313801 , +86-731-84328796 , +86-731-84327332 , zcf6636169@sina.com
                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                10 May 2016
                10 May 2016
                2016
                : 35
                : 76
                Affiliations
                [ ]Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan PR China
                [ ]Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan PR China
                [ ]Department of Urology Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008 Hunan PR China
                Article
                357
                10.1186/s13046-016-0357-4
                4863317
                27164951
                3537a407-ad16-4ce7-907a-7075d262bc86
                © Chen et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 24 March 2016
                : 5 May 2016
                Funding
                Funded by: National Natural Scientific Foundation of China
                Award ID: 81401901
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81372515
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Oncology & Radiotherapy
                mir-361-3p,progression,nsclc,sh2b1
                Oncology & Radiotherapy
                mir-361-3p, progression, nsclc, sh2b1

                Comments

                Comment on this article