23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytic acid-loaded polyvinyl alcohol hydrogel promotes wound healing of injured corneal epithelium through inhibiting ferroptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As the important barrier of intraocular tissue, cornea is easy to suffer various kinds of injuries. Among them, acute alkali burn is a thorny ophthalmic emergency event, which can lead to corneal persistent epithelial defects, ulcers, and even perforation. Ferroptosis, a mode of regulatory cell death, has been found to play a key role in the process of corneal alkali burn, of which lipid peroxidation and intracellular iron levels are considered to be the possible therapeutic targets. To seek new effective treatments, the study herein focused on the occurrence of oxidative stress and ferroptosis in corneal alkali burn, exploring the role of phytic acid (PA), a natural small molecule with both antioxidant and iron chelating capacity, in the repair of corneal epithelial injury. The in vivo therapeutic results showed that PA eyedrops treatment promoted the recovery of corneal morphology and function, and in vitro experiments proved that PA prompted the repair of oxidative stress induced-corneal epithelial injury through ferroptosis inhibition. In addition, better drug treatment effect could be achieved through hydrogel delivery and sustained release, and our in vivo experiments showed the superior therapeutic effects of PA delivered by PVA hydrogels with larger molecular weights on corneal injury. In summary, this study demonstrated the excellent effect of natural small molecule PA with antioxidant and high efficiency chelating ferrous ions on ferroptosis inhibition, and showed the outstanding application prospect of PVA/PA hydrogels in the treatment of corneal epithelial injury.

          Graphical abstract

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ferroptosis: past, present and future

            Ferroptosis is a new type of cell death that was discovered in recent years and is usually accompanied by a large amount of iron accumulation and lipid peroxidation during the cell death process; the occurrence of ferroptosis is iron-dependent. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through different pathways, resulting in a decrease in antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. Recent studies have shown that ferroptosis is closely related to the pathophysiological processes of many diseases, such as tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury, and blood diseases. How to intervene in the occurrence and development of related diseases by regulating cell ferroptosis has become a hotspot and focus of etiological research and treatment, but the functional changes and specific molecular mechanisms of ferroptosis still need to be further explored. This paper systematically summarizes the latest progress in ferroptosis research, with a focus on providing references for further understanding of its pathogenesis and for proposing new targets for the treatment of related diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferroptosis: Death by Lipid Peroxidation.

              Ferroptosis is a regulated form of cell death driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and subsequent accumulation of lipid-based reactive oxygen species (ROS), particularly lipid hydroperoxides. This form of iron-dependent cell death is genetically, biochemically, and morphologically distinct from other cell death modalities, including apoptosis, unregulated necrosis, and necroptosis. Ferroptosis is regulated by specific pathways and is involved in diverse biological contexts. Here we summarize the discovery of ferroptosis, the mechanism of ferroptosis regulation, and its increasingly appreciated relevance to both normal and pathological physiology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                11 September 2024
                October 2024
                11 September 2024
                : 76
                : 103354
                Affiliations
                [a ]Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
                [b ]Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
                [c ]Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
                Author notes
                [* ]Corresponding author. Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China. Sunhao6666@ 123456126.com
                [** ]Corresponding author. Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China. drfuyao@ 123456126.com
                [*** ]Corresponding author. Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No.800, Dongchuan Road, Minhang District, Shanghai, 200240, China. chunleizhang@ 123456sjtu.edu.cn
                Article
                S2213-2317(24)00332-X 103354
                10.1016/j.redox.2024.103354
                11426138
                39298836
                34e4d555-9b93-49d5-8ae1-e80dadb0370d
                © 2024 The Authors

                This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

                History
                : 1 August 2024
                : 6 September 2024
                : 11 September 2024
                Categories
                Research Paper

                corneal epithelial regeneration,phytic acid,polyvinyl alcohol hydrogel,ferroptosis

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content82

                Most referenced authors1,987