30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Usage of Antiseptics Is Associated with Reduced Susceptibility in Clinical Isolates of Staphylococcus aureus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Hospital-acquired infection is a major cause of morbidity and mortality, and regimes to prevent infection are crucial in infection control. These include the decolonization of vulnerable patients with methicillin-resistant Staphylococcus aureus (MRSA) carriage using antiseptics, including chlorhexidine and octenidine. Concern has been raised, however, regarding the possible development of biocide resistance. In this study, we assembled a panel of S. aureus isolates, including isolates collected before the development of chlorhexidine and octenidine and isolates, from a major hospital trust in the United Kingdom during a period when the decolonization regimes were altered. We observed significant increases in the MIC and minimum bactericidal concentration (MBC) of chlorhexidine in isolates from periods of high usage of chlorhexidine. Isolates with increased MICs and MBCs of octenidine rapidly emerged after octenidine was introduced in the trust. There was no apparent cross-resistance between the two biocidal agents. A combination of variable-number tandem repeat (VNTR) analysis, PCR for qac genes, and whole-genome sequencing was used to type isolates and examine possible mechanisms of resistance. There was no expansion of a single strain associated with decreased biocide tolerance, and biocide susceptibility did not correlate with carriage of qac efflux pump genes. Mutations within the NorA or NorB efflux pumps, previously associated with chlorhexidine export, were identified, however, suggesting that this may be an important mechanism of biocide tolerance. We present evidence that isolates are evolving in the face of biocide challenge in patients and that changes in decolonization regimes are reflected in changes in susceptibility of isolates.

          IMPORTANCE

          Infection in hospitals remains a major cause of death and disease. One way in which we combat this is by decolonizing at-risk patients from carriage of bacteria which can cause disease such as MRSA. This is done with antiseptics, including chlorhexidine and octenidine. There is concern, however, that bacteria may be able to become resistant to these antiseptics. In this study, we looked at isolates of MRSA and found that there was a correlation between the use of antiseptics and increased resistance in the isolates. We also suggest that the mechanism by which these more tolerant isolates may become resistant to antiseptics is that of changing a transport pump that exports these agents. This information suggests that we need to study the impact of antiseptics on clinically important bacteria more closely.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of Daily Chlorhexidine Bathing on Hospital-Acquired Infection

          Results of previous single-center, observational studies suggest that daily bathing of patients with chlorhexidine may prevent hospital-acquired bloodstream infections and the acquisition of multidrug-resistant organisms (MDROs). We conducted a multicenter, cluster-randomized, nonblinded crossover trial to evaluate the effect of daily bathing with chlorhexidine-impregnated washcloths on the acquisition of MDROs and the incidence of hospital-acquired bloodstream infections. Nine intensive care and bone marrow transplantation units in six hospitals were randomly assigned to bathe patients either with no-rinse 2% chlorhexidine-impregnated washcloths or with nonantimicrobial washcloths for a 6-month period, exchanged for the alternate product during the subsequent 6 months. The incidence rates of acquisition of MDROs and the rates of hospital-acquired bloodstream infections were compared between the two periods by means of Poisson regression analysis. A total of 7727 patients were enrolled during the study. The overall rate of MDRO acquisition was 5.10 cases per 1000 patient-days with chlorhexidine bathing versus 6.60 cases per 1000 patient-days with nonantimicrobial washcloths (P=0.03), the equivalent of a 23% lower rate with chlorhexidine bathing. The overall rate of hospital-acquired bloodstream infections was 4.78 cases per 1000 patient-days with chlorhexidine bathing versus 6.60 cases per 1000 patient-days with nonantimicrobial washcloths (P=0.007), a 28% lower rate with chlorhexidine-impregnated washcloths. No serious skin reactions were noted during either study period. Daily bathing with chlorhexidine-impregnated washcloths significantly reduced the risks of acquisition of MDROs and development of hospital-acquired bloodstream infections. (Funded by the Centers for Disease Control and Prevention and Sage Products; ClinicalTrials.gov number, NCT00502476.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance.

            Quaternary ammonium compounds (QACs) have represented one of the most visible and effective classes of disinfectants for nearly a century. With simple preparation, wide structural variety, and versatile incorporation into consumer products, there have been manifold developments and applications of these structures. Generally operating via disruption of one of the most fundamental structures in bacteria-the cell membrane-leading to cell lysis and bacterial death, the QACs were once thought to be impervious to resistance. Developments over the past decades, however, have shown this to be far from the truth. It is now known that a large family of bacterial genes (generally termed qac genes) encode efflux pumps capable of expelling many QAC structures from bacterial cells, leading to a decrease in susceptibility to QACs; methods of regulation of qac transcription are also understood. Importantly, qac genes can be horizontally transferred via plasmids to other bacteria and are often transmitted alongside other antibiotic-resistant genes; this dual threat represents a significant danger to human health. In this review, both QAC development and QAC resistance are documented, and possible strategies for addressing and overcoming QAC-resistant bacteria are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter?

              Antiseptic agents are increasingly used for hand hygiene and skin decolonization as key tools for the prevention of healthcare-associated infections. Chlorhexidine, a divalent, cationic biguanide, has a broad spectrum of activity and is one of the most frequently used topical antiseptic agents. Notably, there are an increasing number of prevalence studies that report reduced levels of susceptibility to chlorhexidine. In contrast to bacterial resistance to antibiotics, using parameters such as the MIC to define resistance to antiseptics, including chlorhexidine, is not straightforward. A range of methods have been used for the detection of reduced susceptibility to chlorhexidine, but, importantly, there is no standardized method and no consensus on the definition of chlorhexidine 'resistance'. In this review we have assessed the methods available for the detection of reduced susceptibility to chlorhexidine and the prevalence of coresistance to other antimicrobial agents. We have focused on the development of reduced susceptibility to chlorhexidine and the presence of efflux-mediated resistance genes in staphylococci, and have reviewed the clinical significance of this phenomenon. Lastly, we have identified unanswered questions to further our understanding of this emergent threat. We anticipate that clinical use of chlorhexidine will continue to increase, and it will be important to be alert to the possibility that this may lead to the emergence of new clones with reduced susceptibility. Indiscriminate chlorhexidine use in the absence of efficacy data should be discouraged.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                29 May 2018
                May-Jun 2018
                : 9
                : 3
                : e00894-18
                Affiliations
                [a ]Public Health England Birmingham Laboratory, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
                [b ]Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
                [c ]Research and Development, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
                [d ]Quadram Institute Bioscience, Norwich, United Kingdom
                [e ]University Hospital Birmingham, Birmingham, United Kingdom
                [f ]Norwich Medical School, University of East Anglia, Norwich, United Kingdom
                McMaster University
                Author notes
                Address correspondence to Mark Webber, mark.webber@ 123456quadram.ac.uk .
                Article
                mBio00894-18
                10.1128/mBio.00894-18
                5974466
                29844113
                3460bc39-38c9-446a-acc0-2c64fd21585f
                Copyright © 2018 Hardy et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 24 April 2018
                : 3 May 2018
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 30, Pages: 10, Words: 5790
                Categories
                Research Article
                Custom metadata
                May/June 2018

                Life sciences
                mrsa,chlorhexidine,octenidine
                Life sciences
                mrsa, chlorhexidine, octenidine

                Comments

                Comment on this article