97
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abnormal maternal inflammation leads to TNF-mediated fetal growth restriction and some features of preeclampsia that can be ameliorated with the nitric oxide mimetic nitroglycerin.

          Abstract

          Fetal growth restriction (FGR) and preeclampsia (PE) are often associated with abnormal maternal inflammation, deficient spiral artery (SA) remodeling, and altered uteroplacental perfusion. Here, we provide evidence of a novel mechanistic link between abnormal maternal inflammation and the development of FGR with features of PE. Using a model in which pregnant rats are administered low-dose lipopolysaccharide (LPS) on gestational days 13.5–16.5, we show that abnormal inflammation resulted in FGR mediated by tumor necrosis factor-α (TNF). Inflammation was also associated with deficient trophoblast invasion and SA remodeling, as well as with altered uteroplacental hemodynamics and placental nitrosative stress. Moreover, inflammation increased maternal mean arterial pressure (MAP) and was associated with renal structural alterations and proteinuria characteristic of PE. Finally, transdermal administration of the nitric oxide (NO) mimetic glyceryl trinitrate prevented altered uteroplacental perfusion, LPS-induced inflammation, placental nitrosative stress, renal structural and functional alterations, increase in MAP, and FGR. These findings demonstrate that maternal inflammation can lead to severe pregnancy complications via a mechanism that involves increased maternal levels of TNF. Our study provides a rationale for the use of antiinflammatory agents or NO-mimetics in the treatment and/or prevention of inflammation-associated pregnancy complications.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy

          Physiological conversion of the maternal spiral arteries is key to a successful human pregnancy. It involves loss of smooth muscle and the elastic lamina from the vessel wall as far as the inner third of the myometrium, and is associated with a 5–10-fold dilation at the vessel mouth. Failure of conversion accompanies common complications of pregnancy, such as early-onset preeclampsia and fetal growth restriction. Here, we model the effects of terminal dilation on inflow of blood into the placental intervillous space at term, using dimensions in the literature derived from three-dimensional reconstructions. We observe that dilation slows the rate of flow from 2 to 3 m/s in the non-dilated part of an artery of 0.4–0.5 mm diameter to approximately 10 cm/s at the 2.5 mm diameter mouth, depending on the exact radius and viscosity. This rate predicts a transit time through the intervillous space of approximately 25 s, which matches observed times closely. The model shows that in the absence of conversion blood will enter the intervillous space as a turbulent jet at rates of 1–2 m/s. We speculate that the high momentum will damage villous architecture, rupturing anchoring villi and creating echogenic cystic lesions as evidenced by ultrasound. The retention of smooth muscle will also increase the risk of spontaneous vasoconstriction and ischaemia–reperfusion injury, generating oxidative stress. Dilation has a surprisingly modest impact on total blood flow, and so we suggest the placental pathology associated with deficient conversion is dominated by rheological consequences rather than chronic hypoxia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The uterine spiral arteries in human pregnancy: facts and controversies.

            Uterine spiral arteries play a vital role in supplying nutrients to the placenta and fetus, and for this purpose they are remodelled into highly dilated vessels by the action of invading trophoblast (physiological change). Knowledge of the mechanisms of these changes is relevant for a better understanding of pre-eclampsia and other pregnancy complications which show incomplete spiral artery remodelling. Controversies still abound concerning different steps in these physiological changes, and several of these disagreements are highlighted in this review, thereby suggesting directions for further research. First, a better definition of the degree of decidua- versus trophoblast-associated remodelling may help to devise a more adequate terminology. Other contestable issues are the vascular plugging and its relation with oxygen, trophoblast invasion from the outside or the inside of the vessels (intravasation versus extravasation), the impact of haemodynamics on endovascular migration, the replacement of arterial components by trophoblast, maternal tissue repair mechanisms and the role of uterine natural killer (NK) cells. Several of these features may be disturbed in complicated pregnancies, including the early decidua-associated vascular remodelling, vascular plugging and haemodynamics. The hyperinflammatory condition of pre-eclampsia may be responsible for vasculopathies such as acute atherosis, although the overall impact of such lesions on placental function is far from clear. Several features of the human placental bed are mirrored by processes in other species with haemochorial placentation, and studying such models may help to illuminate poorly understood aspects of human placentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia.

              Maternal uteroplacental blood flow increases during pregnancy. Altered uteroplacental blood flow is a core predictor of abnormal pregnancy. Normally, the uteroplacental arteries are invaded by endovascular trophoblast and remodeled into dilated, inelastic tubes without maternal vasomotor control. Disturbed remodeling is associated with maintenance of high uteroplacental vascular resistance and intrauterine growth restriction (IUGR) and preeclampsia. Herein, we review routes, mechanisms, and control of endovascular trophoblast invasion. The reviewed data suggest that endovascular trophoblast invasion involves a side route of interstitial invasion. Failure of vascular invasion is preceded by impaired interstitial trophoblast invasion. Extravillous trophoblast synthesis of nitric oxide is discussed in relation to arterial dilation that paves the way for endovascular trophoblast. Moreover, molecular mimicry of invading trophoblast-expressing endothelial adhesion molecules is discussed in relation to replacement of endothelium by trophoblast. Also, maternal uterine endothelial cells actively prepare endovascular invasion by expression of selectins that enable trophoblast to adhere to maternal endothelium. Finally, the mother can prevent endovascular invasion by activated macrophage-induced apoptosis of trophoblast. These data are partially controversial because of methodological restrictions associated with limitations of human tissue investigations and animal studies. Animal models require special care when extrapolating data to the human due to extreme species variations regarding trophoblast invasion. Basal plates of delivered placentas or curettage specimens have been used to describe failure of trophoblast invasion associated with IUGR and preeclampsia; however, they are unsuitable for these kinds of studies, since they do not include the area of pathogenic events, i.e., the placental bed.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                13 January 2014
                : 211
                : 1
                : 165-179
                Affiliations
                Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada K7L 3N6
                Author notes
                CORRESPONDENCE Charles H. Graham: grahamc@ 123456queensu.ca
                Article
                20130295
                10.1084/jem.20130295
                3892976
                24395887
                346095eb-ef69-4630-b75b-e6fba2b9a81a
                © 2014 Cotechini et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 8 February 2013
                : 20 November 2013
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article