10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy, the innate immune response and cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both autophagy, a cellular recycling process, and the innate immune response can have different effects on tumour formation at different stages. Interestingly, autophagy and the innate immune response interact during tumorigenesis to have both tumour‐promoting and tumour‐inhibiting affects. By dissecting the interaction between autophagy and the innate immune response during tumour formation, novel therapeutic strategies may be identified.

          Abstract

          Autophagy is a cellular degradation and recycling system, which can interact with components of innate immune signalling pathways to enhance pathogen clearance, in both immune and nonimmune cells. Whilst this interaction is often beneficial for pathogen clearance, it can have varying outcomes in regard to tumorigenesis. Autophagy and the innate immune response can have both pro‐ and antitumorigenic effects at different stages of tumorigenesis due to the plastic nature of the tumour microenvironment (TME). Although both of these components have been studied in isolation as potential therapeutic targets, there has been less research concerning the interaction between autophagy and the innate immune response within the TME. As the innate immune response is critical for the formation of an effective antitumour adaptive immune response, targeting autophagy pathways in both tumour cells and innate immune cells could enhance tumour clearance. Within tumour cells, autophagy pathways are intertwined with pattern recognition receptor (PRR), inflammatory and cell death pathways, and therefore can alter the immunogenicity of the TME and development of the antitumour immune response. In innate immune cells, autophagy components can have autophagy‐independent roles in functional pathways, and therefore could be valuable targets for enhancing immune cell function in the TME and immunotherapy. This review highlights the individual importance of autophagy and the innate immune response to tumorigenesis, and also explains the complex interactions between these pathways in the TME.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production.

          Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor.

            The biochemical properties of beclin 1 suggest a role in two fundamentally important cell biological pathways: autophagy and apoptosis. We show here that beclin 1-/- mutant mice die early in embryogenesis and beclin 1+/- mutant mice suffer from a high incidence of spontaneous tumors. These tumors continue to express wild-type beclin 1 mRNA and protein, establishing that beclin 1 is a haploinsufficient tumor suppressor gene. Beclin 1-/- embryonic stem cells have a severely altered autophagic response, whereas their apoptotic response to serum withdrawal or UV light is normal. These results demonstrate that beclin 1 is a critical component of mammalian autophagy and establish a role for autophagy in tumor suppression. They both provide a biological explanation for recent evidence implicating beclin 1 in human cancer and suggest that mutations in other genes operating in this pathway may contribute to tumor formation through deregulation of autophagy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural killer cells and other innate lymphoid cells in cancer

              Immuno-oncology is an emerging field that has revolutionized cancer treatment. Most immunomodulatory strategies focus on enhancing T cell responses, but there has been a recent surge of interest in harnessing the relatively underexplored natural killer (NK) cell compartment for therapeutic interventions. NK cells show cytotoxic activity against diverse tumour cell types, and some of the clinical approaches originally developed to increase T cell cytotoxicity may also activate NK cells. Moreover, increasing numbers of studies have identified novel methods for increasing NK cell antitumour immunity and expanding NK cell populations ex vivo, thereby paving the way for a new generation of anticancer immunotherapies. The role of other innate lymphoid cells (group 1 innate lymphoid cell (ILC1), ILC2 and ILC3 subsets) in tumours is also being actively explored. This Review provides an overview of the field and summarizes current immunotherapeutic approaches for solid tumours and haematological malignancies.
                Bookmark

                Author and article information

                Contributors
                k.ryan@beatson.gla.ac.uk
                Journal
                Mol Oncol
                Mol Oncol
                10.1002/(ISSN)1878-0261
                MOL2
                Molecular Oncology
                John Wiley and Sons Inc. (Hoboken )
                1574-7891
                1878-0261
                30 August 2020
                September 2020
                : 14
                : 9 ( doiID: 10.1002/mol2.v14.9 )
                : 1913-1929
                Affiliations
                [ 1 ] Cancer Research UK Beatson Institute Garscube Estate Glasgow UK
                [ 2 ] Institute of Cancer Sciences University of Glasgow Garscube Estate Glasgow UK
                Author notes
                [*] [* ] Correspondence

                Kevin M. Ryan, Cancer Research UK

                Beatson Institute, Garscube Estate,

                Switchback Road, Glasgow G61 1BD, UK

                Tel: +441413303655

                Fax: +441419426521

                E‐mail: k.ryan@ 123456beatson.gla.ac.uk

                Author information
                https://orcid.org/0000-0001-8491-2506
                https://orcid.org/0000-0002-1059-9681
                Article
                MOL212774
                10.1002/1878-0261.12774
                7463325
                32745353
                345f295f-9db5-4d9e-be0c-d61f507c3a84
                © 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 May 2020
                : 22 June 2020
                : 24 June 2020
                Page count
                Figures: 2, Tables: 0, Pages: 17, Words: 12528
                Funding
                Funded by: Cancer Research UK , open-funder-registry 10.13039/501100000289;
                Award ID: A17196
                Award ID: A22903
                Categories
                Review
                Review
                Custom metadata
                2.0
                September 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.8 mode:remove_FC converted:02.09.2020

                Oncology & Radiotherapy
                autophagy,cancer,immunotherapy,innate immune response,tumour microenvironment

                Comments

                Comment on this article