0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of Ingested Micro- and Nanoplastic (MNP)-Mediated Genotoxicity in an In Vitro Model of the Small Intestinal Epithelium (SIE)

      , , , ,
      Nanomaterials
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Micro- and nanoplastics (MNPs) have become ubiquitous contaminants of water and foods, resulting in high levels of human ingestion exposure. MNPs have been found in human blood and multiple tissues, suggesting that they are readily absorbed by the gastrointestinal tract (GIT) and widely distributed. Growing toxicological evidence suggests that ingested MNPs may pose a serious health threat. The potential genotoxicity of MNPs, however, remains largely unknown. In this study, genotoxicity of primary and environmentally relevant secondary MNPs was assessed in a triculture small intestinal epithelium (SIE) model using the CometChip assay. Aqueous suspensions of 25 and 1000 nm carboxylated polystyrene spheres (PS25C and PS1KC), and incinerated polyethylene (PEI PM0.1) were subjected to simulated GIT digestion to create physiologically relevant exposures (digestas), which were applied to the SIE model at final MNP concentrations of 1, 5, and 20 μg/mL for 24 or 48 h. PS25C and PS1KC induced DNA damage in a time- and concentration-dependent manner. To our knowledge, this is one of the first assessment of MNP genotoxicity in an integrated in vitro ingestion platform including simulated GIT digestion and a triculture SIE model. These findings suggest that ingestion of high concentrations of carboxylated PS MNPs could have serious genotoxic consequences in the SIE.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution

          Plastic pollution is a planetary threat, affecting nearly every marine and freshwater ecosystem globally. In response, multilevel mitigation strategies are being adopted but with a lack of quantitative assessment of how such strategies reduce plastic emissions. We assessed the impact of three broad management strategies, plastic waste reduction, waste management, and environmental recovery, at different levels of effort to estimate plastic emissions to 2030 for 173 countries. We estimate that 19 to 23 million metric tons, or 11%, of plastic waste generated globally in 2016 entered aquatic ecosystems. Considering the ambitious commitments currently set by governments, annual emissions may reach up to 53 million metric tons per year by 2030. To reduce emissions to a level well below this prediction, extraordinary efforts to transform the global plastics economy are needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Plasticenta: First evidence of microplastics in human placenta

            Microplastics are particles smaller than five millimeters deriving from the degradation of plastic objects present in the environment. Microplastics can move from the environment to living organisms, including mammals. In this study, six human placentas, collected from consenting women with physiological pregnancies, were analyzed by Raman Microspectroscopy to evaluate the presence of microplastics. In total, 12 microplastic fragments (ranging from 5 to 10 μm in size), with spheric or irregular shape were found in 4 placentas (5 in the fetal side, 4 in the maternal side and 3 in the chorioamniotic membranes); all microplastics particles were characterized in terms of morphology and chemical composition. All of them were pigmented; three were identified as stained polypropylene a thermoplastic polymer, while for the other nine it was possible to identify only the pigments, which were all used for man-made coatings, paints, adhesives, plasters, finger paints, polymers and cosmetics and personal care products.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Discovery and quantification of plastic particle pollution in human blood

              Plastic particles are ubiquitous pollutants in the living environment and food chain but no study to date has reported on the internal exposure of plastic particles in human blood. This study's goal was to develop a robust and sensitive sampling and analytical method with double shot pyrolysis - gas chromatography/mass spectrometry and apply it to measure plastic particles ≥700 nm in human whole blood from 22 healthy volunteers. Four high production volume polymers applied in plastic were identified and quantified for the first time in blood. Polyethylene terephthalate, polyethylene and polymers of styrene (a sum parameter of polystyrene, expanded polystyrene, acetonitrile butadiene styrene etc.) were the most widely encountered, followed by poly(methyl methacrylate). Polypropylene was analysed but values were under the limits of quantification. In this study of a small set of donors, the mean of the sum quantifiable concentration of plastic particles in blood was 1.6 µg/ml, showing a first measurement of the mass concentration of the polymeric component of plastic in human blood. This pioneering human biomonitoring study demonstrated that plastic particles are bioavailable for uptake into the human bloodstream. An understanding of the exposure of these substances in humans and the associated hazard of such exposure is needed to determine whether or not plastic particle exposure is a public health risk.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NANOKO
                Nanomaterials
                Nanomaterials
                MDPI AG
                2079-4991
                May 2024
                May 06 2024
                : 14
                : 9
                : 807
                Article
                10.3390/nano14090807
                34518e30-435a-4232-a563-4509802a2f7d
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article