29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of accuracy between FSL’s FIRST and Freesurfer for caudate nucleus and putamen segmentation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although several methods have been developed to automatically delineate subcortical gray matter structures from MR images, the accuracy of these algorithms has not been comprehensively examined. Most of earlier studies focused primarily on the hippocampus. Here, we assessed the accuracy of two widely used non-commercial programs (FSL-FIRST and Freesurfer) for segmenting the caudate and putamen. T1-weighted 1 mm 3 isotropic resolution MR images were acquired for thirty healthy subjects (15 females). Caudate nucleus and putamen were segmented manually by two independent observers and automatically by FIRST and Freesurfer (v4.5 and v5.3). Utilizing manual labels as reference standard the following measures were studied: Dice coefficient ( D), percentage volume difference ( PVD), absolute volume difference as well as intraclass correlation coefficient (ICC) for consistency and absolute agreement. For putamen segmentation, FIRST achieved higher D, lower PVD and higher ICC for absolute agreement with manual tracing than either version of Freesurfer. Freesurfer overestimated the putamen, while FIRST was not statistically different from manual tracing. The ICC for consistency with manual tracing was similar between the two methods. For caudate segmentation, FIRST and Freesurfer performed more similarly. In conclusion, Freesurfer and FIRST are not equivalent when comparing to manual tracing. FIRST was superior for putaminal segmentation.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder.

          Specific cortico-striato-thalamic circuits are hypothesised to mediate the symptoms of obsessive-compulsive disorder (OCD), but structural neuroimaging studies have been inconsistent. To conduct a meta-analysis of published and unpublished voxel-based morphometry studies in OCD. Twelve data-sets comprising 401 people with OCD and 376 healthy controls met inclusion criteria. A new improved voxel-based meta-analytic method, signed differential mapping (SDM), was developed to examine regions of increased and decreased grey matter volume in the OCD group v. control group. Results No between-group differences were found in global grey matter volumes. People with OCD had increased regional grey matter volumes in bilateral lenticular nuclei, extending to the caudate nuclei, as well as decreased volumes in bilateral dorsal medial frontal/anterior cingulate gyri. A descriptive analysis of quartiles, a sensitivity analysis as well as analyses of subgroups further confirmed these findings. Meta-regression analyses showed that studies that included individuals with more severe OCD were significantly more likely to report increased grey matter volumes in the basal ganglia. No effect of current antidepressant treatment was observed. Conclusions The results support a dorsal prefrontal-striatal model of the disorder and raise the question of whether functional alterations in other brain regions commonly associated with OCD, such as the orbitofrontal cortex, may reflect secondary compensatory strategies. Whether the reported differences between participants with OCD and controls precede the onset of the symptoms and whether they are specific to OCD remains to be established.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes.

            Large databases of high-resolution structural MR images are being assembled to quantitatively examine the relationships between brain anatomy, disease progression, treatment regimens, and genetic influences upon brain structure. Quantifying brain structures in such large databases cannot be practically accomplished by expert neuroanatomists using hand-tracing. Rather, this research will depend upon automated methods that reliably and accurately segment and quantify dozens of brain regions. At present, there is little guidance available to help clinical research groups in choosing such tools. Thus, our goal was to compare the performance of two popular and fully automated tools, FSL/FIRST and FreeSurfer, to expert hand tracing in the measurement of the hippocampus and amygdala. Volumes derived from each automated measurement were compared to hand tracing for percent volume overlap, percent volume difference, across-sample correlation, and 3-D group-level shape analysis. In addition, sample size estimates for conducting between-group studies were computed for a range of effect sizes. Compared to hand tracing, hippocampal measurements with FreeSurfer exhibited greater volume overlap, smaller volume difference, and higher correlation than FIRST, and sample size estimates with FreeSurfer were closer to hand tracing. Amygdala measurement with FreeSurfer was also more highly correlated to hand tracing than FIRST, but exhibited a greater volume difference than FIRST. Both techniques had comparable volume overlap and similar sample size estimates. Compared to hand tracing, a 3-D shape analysis of the hippocampus showed FreeSurfer was more accurate than FIRST, particularly in the head and tail. However, FIRST more accurately represented the amygdala shape than FreeSurfer, which inflated its anterior and posterior surfaces.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study

              Atrophy is regarded a sensitive marker of neurodegenerative pathology. In addition to confirming the well-known presence of decreased global grey matter and hippocampal volumes in Alzheimer's disease, this study investigated whether deep grey matter structure also suffer degeneration in Alzheimer's disease, and whether such degeneration is associated with cognitive deterioration. In this cross-sectional correlation study, two groups were compared on volumes of seven subcortical regions: 70 memory complainers (MCs) and 69 subjects diagnosed with probable Alzheimer's disease. Using 3T 3D T1 MR images, volumes of nucleus accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen and thalamus were automatically calculated by the FMRIB's Integrated Registration and Segmentation Tool (FIRST)—algorithm FMRIB's Software Library (FSL). Subsequently, the volumes of the different regions were correlated with cognitive test results. In addition to finding the expected association between hippocampal atrophy and cognitive decline in Alzheimer's disease, volumes of putamen and thalamus were significantly reduced in patients diagnosed with probable Alzheimer's disease. We also found that the decrease in volume correlated linearly with impaired global cognitive performance. These findings strongly suggest that, beside neo-cortical atrophy, deep grey matter structures in Alzheimer's disease suffer atrophy as well and that degenerative processes in the putamen and thalamus, like the hippocampus, may contribute to cognitive decline in Alzheimer's disease.
                Bookmark

                Author and article information

                Contributors
                gergo.orsi@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 May 2017
                25 May 2017
                2017
                : 7
                : 2418
                Affiliations
                [1 ]MTA-PTE Clinical Neuroscience MR Research Group, Pecs, 7623 Hungary
                [2 ]Pecs Diagnostic Centre, Pecs, 7623 Hungary
                [3 ]ISNI 0000 0001 0663 9479, GRID grid.9679.1, Department of Neurology, , University of Pecs, Medical School, ; Pecs, 7623 Hungary
                [4 ]MTA-PTE Neurobiology of Stress Research Group, Pecs, 7624 Hungary
                [5 ]ISNI 0000 0001 0663 9479, GRID grid.9679.1, Department of Radiology, , University of Pecs, Medical School, ; Pecs, 7624 Hungary
                [6 ]ISNI 0000 0001 0663 9479, GRID grid.9679.1, Department of Neurosurgery, , University of Pecs, Medical School, ; Pecs, 7623 Hungary
                [7 ]ISNI 0000 0001 0663 9479, GRID grid.9679.1, Centre for Neuroscience, , University of Pécs, ; Pécs, 7623 Hungary
                Article
                2584
                10.1038/s41598-017-02584-5
                5445091
                28546533
                344dc360-a797-485a-ba65-04a7b4d4574a
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 December 2016
                : 12 April 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article