8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving the Phototherapeutic Efficiencies of Molecular and Nanoscale Materials by Targeting Mitochondria

      review-article
      , , *
      ,
      Molecules
      MDPI
      nanomedicine, cancer therapy, PDT, PTT, subcellular organelle-targeting

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria-targeted cancer phototherapy (PT), which works by delivering photoresponsive agents specifically to mitochondria, is a powerful strategy to improve the phototherapeutic efficiency of anticancer treatments. Mitochondria play an essential role in cellular apoptosis, and are relevant to the chemoresistance of cancer cells. Furthermore, mitochondria are a major player in many cellular processes and are highly sensitive to hyperthermia and reactive oxygen species. Therefore, mitochondria serve as excellent locations for organelle-targeted phototherapy. In this review, we focus on the recent advances of mitochondria-targeting materials for mitochondria-specific PT. The combination of mitochondria-targeted PT with other anticancer strategies is also summarized. In addition, we discuss both the challenges currently faced by mitochondria-based cancer PT and the promises it holds.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.

          Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer's Disease.

            Mitochondrial oxidative stress is a key pathologic factor in neurodegenerative diseases, including Alzheimer's disease. Abnormal generation of reactive oxygen species (ROS), resulting from mitochondrial dysfunction, can lead to neuronal cell death. Ceria (CeO2) nanoparticles are known to function as strong and recyclable ROS scavengers by shuttling between Ce(3+) and Ce(4+) oxidation states. Consequently, targeting ceria nanoparticles selectively to mitochondria might be a promising therapeutic approach for neurodegenerative diseases. Here, we report the design and synthesis of triphenylphosphonium-conjugated ceria nanoparticles that localize to mitochondria and suppress neuronal death in a 5XFAD transgenic Alzheimer's disease mouse model. The triphenylphosphonium-conjugated ceria nanoparticles mitigate reactive gliosis and morphological mitochondria damage observed in these mice. Altogether, our data indicate that the triphenylphosphonium-conjugated ceria nanoparticles are a potential therapeutic candidate for mitochondrial oxidative stress in Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin.

              Introduction of Ca2+ indicators (photoproteins, fluorescent dyes) that can be trapped in the cytosolic compartment of living cells has yielded major advances in our knowledge of Ca2+ homeostasis. Ca2+ however regulates functions not only in the cytosol but also within various organelles where indicators have not yet been specifically targeted. Here we present a novel procedure by which the free Ca2+ concentration of mitochondria, [Ca2+]m, can be monitored continuously at rest and during stimulation. The complementary DNA for the Ca2+ sensitive photoprotein aequorin was fused in frame with that encoding a mitochondrial presequence. The hybrid cDNA was transfected into bovine endothelial cells and stable clones were obtained expressing variable amounts of mitochondrially targeted apoaequorin. The functional photoprotein could be reconstituted in intact cells by incubation with purified coelenterazine and [Ca2+]m could thus be monitored in situ. This allowed the unprecedented direct demonstration that agonist-stimulated elevations of cytosolic free Ca2+, [Ca2+]i, (measured in parallel with Fura-2) evoke rapid and transient increases of [Ca2+]m, which can be prevented by pretreatment with a mitochondrial uncoupler. The possibility of targeting aequorin to cellular organelles not only offers a new and powerful method for studying aspects of Ca2+ homeostasis that up to now could not be directly approached, but might also be used in the future as a tool to report in situ a variety of apparently unrelated phenomena of wide biological interest.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                18 November 2018
                November 2018
                : 23
                : 11
                : 3016
                Affiliations
                State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; linfengming@ 123456seu.edu.cn (F.L.); byw@ 123456seu.edu.cn (Y.-W.B.)
                Author notes
                [* ]Correspondence: wufg@ 123456seu.edu.cn ; Tel.: 86-025-8379-1810
                Author information
                https://orcid.org/0000-0003-1773-2868
                Article
                molecules-23-03016
                10.3390/molecules23113016
                6278291
                30453692
                3418c51b-1a98-42a3-9d34-3eecf7d24a38
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 September 2018
                : 13 November 2018
                Categories
                Review

                nanomedicine,cancer therapy,pdt,ptt,subcellular organelle-targeting

                Comments

                Comment on this article