There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Background Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. Methodology/Principal Findings We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. Conclusion/Significance The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus).
The pterosaurs were a diverse group of Mesozoic flying reptiles that underwent a body plan reorganization, adaptive radiation, and replacement of earlier forms midway through their long history, resulting in the origin of the Pterodactyloidea, a highly specialized clade containing the largest flying organisms. The sudden appearance and large suite of morphological features of this group were suggested to be the result of it originating in terrestrial environments, where the pterosaur fossil record has traditionally been poor [1, 2], and its many features suggested to be adaptations to those environments [1, 2]. However, little evidence has been available to test this hypothesis, and it has not been supported by previous phylogenies or early pterodactyloid discoveries. We report here the earliest pterosaur with the diagnostic elongate metacarpus of the Pterodactyloidea, Kryptodrakon progenitor, gen. et sp. nov., from the terrestrial Middle-Upper Jurassic boundary of Northwest China. Phylogenetic analysis confirms this species as the basalmost pterodactyloid and reconstructs a terrestrial origin and a predominantly terrestrial history for the Pterodactyloidea. Phylogenetic comparative methods support this reconstruction by means of a significant correlation between wing shape and environment also found in modern flying vertebrates, indicating that pterosaurs lived in or were at least adapted to the environments in which they were preserved.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.