16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Compounds with the ability to scavenge reactive oxygen species (ROS) and inhibit tyrosinase may be useful for the treatment and prevention from ROS-related diseases. The number and location of phenolic hydroxyl of the flavonoids will significantly influence the inhibition of tyrosinase activity. Phenolic hydroxyl is indispensable to the antioxidant activity of flavonoids. Isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin have respectively one, two, three, four, or five phenolic hydroxyls. The different molecular structures with the similar structure to l-3,4-dihydroxyphenylalanine ( l-DOPA) were expected to the different antityrosinase and antioxidant activities.

          Methods

          This investigation tested the antityrosinase activity, the inhibition constant, and inhibition type of isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin. Molecular docking was examined by the Discovery Studio 2.5 (CDOCKER Dock, Dassault Systemes BIOVIA, USA). This experiment also examined the antioxidant effects of the five compounds on supercoiled pBR322 plasmid DNA, lipid peroxidation in rat liver mitochondria in vitro, and DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro.

          Results

          The compounds exhibited good antityrosinase activities. Molecular docking results implied that the compounds could interact with the amino acid residues in the active site center of antityrosinase. These compounds also exhibited antioxidant effects on DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro, lipid peroxidation in rat liver mitochondria induced by Fe 2+/vitamin C system in vitro, and supercoiled pBR322 plasmid DNA. The activity order is isoeugenol < shikonin < baicalein < rosmarinic acid < dihydromyricetin. The results showed the compounds with more phenolic hydroxyls have more antioxidant and antityrosinase activities.

          Conclusion

          This was the first study of molecular docking for modeling the antityrosinase activity of compounds. This was also the first study of the protective effects of compounds on supercoiled pBR322 plasmid DNA, the lipid peroxidation inhibition activity in liver mitochondria. These results suggest that the compounds exhibited antityrosinase and antioxidant activities may be useful in skin pigmentation and food additives.

          Electronic supplementary material

          The online version of this article (10.1186/s13020-018-0206-9) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin.

          Traditional Chinese medicines have been recently recognized as a new source of anticancer drugs and new chemotherapy adjuvant to enhance the efficacy of chemotherapy and to ameliorate the side effects of cancer chemotherapies however their healing mechanisms are still largely unknown. Scutellaria baicalensis is one of the most popular and multi-purpose herb used in China traditionally for treatment of inflammation, hypertension, cardiovascular diseases, and bacterial and viral infections. Accumulating evidence demonstrate that Scutellaria also possesses potent anticancer activities. The bioactive components of Scutellaria have been confirmed to be flavones. The major constituents of Scutellaria baicalensis are Wogonin, Baicalein and Baicalin. These phytochemicals are not only cytostatic but also cytotoxic to various human tumor cell lines in vitro and inhibit tumor growth in vivo. Most importantly, they show almost no or minor toxicity to normal epithelial and normal peripheral blood and myeloid cells. The antitumor functions of these flavones are largely due to their abilities to scavenge oxidative radicals, to attenuate NF-kappaB activity, to inhibit several genes important for regulation of the cell cycle, to suppress COX-2 gene expression and to prevent viral infections. The tumor-selectivity of Wogonin has recently been demonstrated to be due to its ability to differentially modulate the oxidation-reduction status of malignant vs. normal lymphocytic cells and to preferentially induce phospholipase C gamma 1, a key enzyme involved in Ca(2+) signaling, through H(2)O(2) signaling in malignant lymphocytes. This review is aimed to summarize the research results obtained since the last 20 years and to highlight the recently discovered molecular mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants.

            Traditional Chinese medicinal plants associated with anticancer contain a wide variety of natural phenolic compounds with various structural features and possessing widely differing antioxidant activity. The structure-radical scavenging activity relationships of a large number of representative phenolic compounds (e.g., flavanols, flavonols, chalcones, flavones, flavanones, isoflavones, tannins, stilbenes, curcuminoids, phenolic acids, coumarins, lignans, and quinones) identified in the traditional Chinese medicinal plants were evaluated using the improved ABTS*+ and DPPH methods. Different categories of tested phenolics showed significant mean differences in radical scavenging activity. Tannins demonstrated the strongest activity, while most quinones, isoflavones, and lignans tested showed the weakest activity. This study confirmed that the number and position of hydroxyl groups and the related glycosylation and other substitutions largely determined radical scavenging activity of the tested phenolic compounds. The differences in radical scavenging activity were attributed to structural differences in hydroxylation, glycosylation and methoxylation. The ortho-dihydroxy groups were the most important structural feature of high activity for all tested phenolic compounds. Other structural features played a modified role in enhancing or reducing the activity. Within each class of phenolic compounds, the structure-activity relationship was elucidated and discussed. This study reveals the structure-activity relationships of a large series of representative natural phenolic compounds more systematically and fully than previous work. Structure-radical scavenging activity relationships of some natural phenolics identified in the medicinal plants were evaluated for the first time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure-radical scavenging activity relationships of flavonoids.

              The objective of this work is to establish the structural requirements of flavonoids for appreciable radical-scavenging activity (RSA) and elucidate a comprehensive mechanism that can explain their activity. To this end, the RSA of 52 flavonoids against 2,2-diphenyl-1-picrylhydrazyl was determined. The relative change in energy (DeltaH(f)) associated with the formation of various flavonoidal and other phenolic radicals and also the spin distribution in these radicals were determined using computational programmes. By correlating experimental data with DeltaH(f), structural features that affect activity have been identified and considered in perspective. It was shown with compelling evidences that the RSA of flavonoids could be mapped to one of their ring systems, making it possible to study their RSA by dissecting their structures and designing representative simpler models. Consequently, hydroxytoluene units were demonstrated to successfully account for the RSA of flavonoids due to ring B and also to satisfactorily do so for activities due to ring A. Further, a comprehensive model for the radical scavenging reactions of flavonoids (and in general, phenolic compounds), which could account for hydrogen atom donation and the termination of aroxyl radicals, was proposed. Finally, prediction of structural features that could endow flavonoids with appreciable radical scavenging capability was made by considering the stability data and the ease of termination. In conclusion, the underlying molecular phenomena of the RSA of flavonoids could be explained by the ease of hydrogen atom abstraction and the ease of the termination of the flavonoidal aroxyl radicals.
                Bookmark

                Author and article information

                Contributors
                63820572@qq.com , zuoairen@sina.com
                115534243@qq.com
                yuyanying@ncu.edu.cn
                276411076@qq.com
                2992699831@qq.com
                472877468@qq.com
                +86 791 83969610 , Caosw@ncu.edu.cn
                Journal
                Chin Med
                Chin Med
                Chinese Medicine
                BioMed Central (London )
                1749-8546
                19 October 2018
                19 October 2018
                2018
                : 13
                : 51
                Affiliations
                [1 ]ISNI 0000 0001 2182 8825, GRID grid.260463.5, State Key Laboratory of Food Science and Technology, , Nanchang University, ; Nanchang, 330047 Jiangxi China
                [2 ]ISNI 0000 0004 1798 0690, GRID grid.411868.2, Jiangxi University of Traditional Chinese Medicine, ; Nanchang, Jiangxi China
                [3 ]ISNI 0000 0001 2182 8825, GRID grid.260463.5, Department of Chemistry, , Nanchang University, ; Nanchang, Jiangxi China
                Article
                206
                10.1186/s13020-018-0206-9
                6194685
                30364385
                3364e9fd-ecf8-420f-b3f5-ee19760f63ee
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 June 2018
                : 6 September 2018
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Complementary & Alternative medicine
                antityrosinase activity,molecular docking,antioxidant activity,phenolic hydroxyl,isoeugenol,shikonin

                Comments

                Comment on this article