16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Glucose Transport into Neurons Rescues Aβ Toxicity in Drosophila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Glucose hypometabolism is a prominent feature of the brains of patients with Alzheimer’s disease (AD). Disease progression is associated with a reduction in glucose transporters in both neurons and endothelial cells of the blood-brain barrier. However, whether increasing glucose transport into either of these cell types offers therapeutic potential remains unknown. Using an adult-onset Drosophila model of Aβ (amyloid beta) toxicity, we show that genetic overexpression of a glucose transporter, specifically in neurons, rescues lifespan, behavioral phenotypes, and neuronal morphology. This amelioration of Aβ toxicity is associated with a reduction in the protein levels of the unfolded protein response (UPR) negative master regulator Grp78 and an increase in the UPR. We further demonstrate that genetic downregulation of Grp78 activity also protects against Aβ toxicity, confirming a causal effect of its alteration on AD-related pathology. Metformin, a drug that stimulates glucose uptake in cells, mimicked these effects, with a concomitant reduction in Grp78 levels and rescue of the shortened lifespan and climbing defects of Aβ-expressing flies. Our findings demonstrate a protective effect of increased neuronal uptake of glucose against Aβ toxicity and highlight Grp78 as a novel therapeutic target for the treatment of AD.

          Highlights

          • Overexpression of glucose transporter Glut1 rescues a Drosophila Aβ toxicity model

          • Glut1 overexpression reduces Grp78 protein levels and induces the UPR

          • A Grp78 dominant-negative mutant also rescues Aβ toxicity in Drosophila

          • Metformin rescues Aβ toxicity and leads to reduced Grp78 expression

          Abstract

          Niccoli et al. show that overexpression of the glucose transporter Glut1 in neurons rescues Aβ toxicity in a Drosophila Alzheimer’s disease model. This was associated with a reduction in Grp78 levels and induction of the unfolded protein response. This rescue can be mimicked by using metformin, a drug known to induce glucose uptake.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Using FlyAtlas to identify better Drosophila melanogaster models of human disease.

          FlyAtlas, a new online resource, provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration.

            The glucose transporter GLUT1 at the blood-brain barrier (BBB) mediates glucose transport into the brain. Alzheimer's disease is characterized by early reductions in glucose transport associated with diminished GLUT1 expression at the BBB. Whether GLUT1 reduction influences disease pathogenesis remains, however, elusive. Here we show that GLUT1 deficiency in mice overexpressing amyloid β-peptide (Aβ) precursor protein leads to early cerebral microvascular degeneration, blood flow reductions and dysregulation and BBB breakdown, and to accelerated amyloid β-peptide (Aβ) pathology, reduced Aβ clearance, diminished neuronal activity, behavioral deficits, and progressive neuronal loss and neurodegeneration that develop after initial cerebrovascular degenerative changes. We also show that GLUT1 deficiency in endothelium, but not in astrocytes, initiates the vascular phenotype as shown by BBB breakdown. Thus, reduced BBB GLUT1 expression worsens Alzheimer's disease cerebrovascular degeneration, neuropathology and cognitive function, suggesting that GLUT1 may represent a therapeutic target for Alzheimer's disease vasculo-neuronal dysfunction and degeneration.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases.

              The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.
                Bookmark

                Author and article information

                Contributors
                Journal
                Curr Biol
                Curr. Biol
                Current Biology
                Cell Press
                0960-9822
                1879-0445
                12 September 2016
                12 September 2016
                : 26
                : 17
                : 2291-2300
                Affiliations
                [1 ]Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
                [2 ]Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
                Author notes
                []Corresponding author partridge@ 123456age.mpg.de
                Article
                S0960-9822(16)30768-0
                10.1016/j.cub.2016.07.017
                5026704
                27524482
                33033779-7ca8-4ca5-a380-aee7007d00f9
                © 2016 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 November 2015
                : 9 June 2016
                : 11 July 2016
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article