10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a five-protein signature for predicting the prognosis of head and neck squamous cell carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently no reliable indicators are available for predicting the clinical outcome of head and neck squamous cell carcinoma (HNSCC). This study aimed to develop a protein-based model to improve the prognosis prediction of HNSCC. The proteome data of HNSCC cohort was downloaded from The Cancer Proteome Atlas (TCPA) portal. The TCPA HNSCC cohort was randomly divided into the discovery and validation cohort. A protein-based risk signature was developed with the discovery cohort, and then verified with the validation cohort. The prognostic value of HER3_pY1289 was further determined. We have constructed a five-protein risk signature which was strongly associated with the overall survival (OS) in the discovery cohort. Similar findings were observed in the validation cohort. The protein-based risk signature was identified as an independent prognostic factor for HNSCC. A nomogram model built on the protein-based risk signature exhibited good performance for predicting OS. Our immunohistochemistry (IHC) analysis showed that higher HER3_pY1289 staining intensity was closely associated with unfavorable prognosis of HNSCC. HER3 suppression inhibited the proliferation and invasion capacity of HNSCC cells. Collectively, we have developed a protein-based risk signature for accurately predicting the prognosis of HNSCC, which might provide valuable information for optimal individualized treatment regimens.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Head and neck cancer.

          Most head and neck cancers are squamous cell carcinomas that develop in the upper aerodigestive epithelium after exposure to carcinogens such as tobacco and alcohol. Human papillomavirus has also been strongly implicated as a causative agent in a subset of these cancers. The complex anatomy and vital physiological role of the tumour-involved structures dictate that the goals of treatment are not only to improve survival outcomes but also to preserve organ function. Major improvements have been accomplished in surgical techniques and radiotherapy delivery. Moreover, systemic therapy including chemotherapy and molecularly targeted agents--namely, the epidermal growth factor receptor inhibitors--has been successfully integrated into potentially curative treatment of locally advanced squamous-cell carcinoma of the head and neck. In deciding which treatment strategy would be suitable for an individual patient, important considerations include expected functional outcomes, ability to tolerate treatment, and comorbid illnesses. The collaboration of many specialties is the key for optimum assessment and decision making. We review the epidemiology, molecular pathogenesis, diagnosis and staging, and the latest multimodal management of squamous cell carcinoma of the head and neck.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            mTOR kinase structure, mechanism and regulation by the rapamycin-binding domain

            The mammalian target of rapamycin (mTOR), a phosphoinositide 3-kinase related protein kinase, controls cell growth in response to nutrients and growth factors and is frequently deregulated in cancer. Here we report co-crystal structures of a truncated mTOR-mLST8 complex with an ATP transition state mimic and with ATP-site inhibitors. The structures reveal an intrinsically active kinase conformation, with catalytic residues and mechanism remarkably similar to canonical protein kinases. The active site is highly recessed due to the FKBP12-Rapamycin binding (FRB) domain and an inhibitory helix protruding from the catalytic cleft. mTOR activating mutations map to the structural framework that holds these elements in place, indicating the kinase is controlled by restricted access. In vitro biochemistry indicates that the FRB domain acts as a gatekeeper, with its rapamycin-binding site interacting with substrates to grant them access to the restricted active site. FKBP12-rapamycin inhibits by directly blocking substrate recruitment and by further restricting active site access. The structures also reveal active site residues and conformational changes that underlie inhibitor potency and specificity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlation of mRNA and protein in complex biological samples.

              The correlation between mRNA and protein abundances in the cell has been reported to be notoriously poor. Recent technological advances in the quantitative analysis of mRNA and protein species in complex samples allow the detailed analysis of this pathway at the center of biological systems. We give an overview of available methods for the identification and quantification of free and ribosome-bound mRNA, protein abundances and individual protein turnover rates. We review available literature on the correlation of mRNA and protein abundances and discuss biological and technical parameters influencing the correlation of these central biological molecules.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 October 2020
                13 October 2020
                : 12
                : 19
                : 19740-19755
                Affiliations
                [1 ]Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
                [2 ]UCLA School of Dentistry, Los Angeles, CA 90095, USA
                Author notes
                [*]

                Co-author

                Correspondence to: Xinyuan Zhao; email: zhaoxinyuan1989@smu.edu.cn
                Correspondence to: Li Cui; email: zsucllj@ucla.edu
                Article
                104036
                10.18632/aging.104036
                7732293
                33049713
                3301f342-9c2c-4e91-bdb9-684b21318878
                Copyright: © 2020 Zhao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 February 2020
                : 19 August 2020
                Categories
                Research Paper

                Cell biology
                head and neck squamous cell carcinoma,prognostic signature,survival analysis,her3_py1289,the cancer proteome atlas

                Comments

                Comment on this article