12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of Nocardia by 16S Ribosomal RNA Gene PCR and Metagenomic Next-Generation Sequencing (mNGS)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, the aim was to investigate the discriminatory power of molecular diagnostics based on mNGS and traditional 16S ribosomal RNA PCR among Nocardia species. A total of fourteen clinical isolates from patients with positive Nocardia cultures and clinical evidence were included between January 2017 and June 2020 in HeNan Provincial People’s Hospital. DNA extraction and 16S rRNA PCR were performed on positive cultures, and pathogens were detected by mNGS in these same samples directly. Among the 14 Nocardia isolates, four species were identified, and N. cyriacigeorgica (8 cases) is the most common species. Twelve of the 14 Nocardia spp. isolates were identified by the two methods, while two strains of N. cyriacigeorgica were not identified by mNGS. All tested isolates showed susceptibility to trimethoprim-sulfamethoxazole (SXT), amikacin and linezolid. Apart from Nocardia species, other pathogens such as Acinetobacter baumannii, Klebsiella pneumonia, Aspergillus, Enterococcus faecalis, Human herpesvirus , etc., were detected from the same clinical samples by mNGS. However, these different pathogens were considered as colonization or contamination. We found that it is essential to accurately identify species for determining antibiotic sensitivity and, consequently, choosing antibiotic treatment. 16S rRNA PCR was useful for identification of nocardial infection among species, while this technique needs the clinicians to make the pre-considerations of nocardiosis. However, mNGS may be a putative tool for rapid and accurate detection and identification of Nocardia, beneficial for applications of antimicrobial drugs and timely adjustments of medication.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

          Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection

            Nearly all infectious agents contain DNA or RNA genomes, making sequencing an attractive approach for pathogen detection. The cost of high-throughput or next-generation sequencing has been reduced by several orders of magnitude since its advent in 2004, and it has emerged as an enabling technological platform for the detection and taxonomic characterization of microorganisms in clinical samples from patients. This review focuses on the application of untargeted metagenomic next-generation sequencing to the clinical diagnosis of infectious diseases, particularly in areas in which conventional diagnostic approaches have limitations. The review covers ( a) next-generation sequencing technologies and common platforms, ( b) next-generation sequencing assay workflows in the clinical microbiology laboratory, ( c) bioinformatics analysis of metagenomic next-generation sequencing data, ( d) validation and use of metagenomic next-generation sequencing for diagnosing infectious diseases, and ( e) significant case reports and studies in this area. Next-generation sequencing is a new technology that has the promise to enhance our ability to diagnose, interrogate, and track infectious diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory

              Recent advancements in next-generation sequencing (NGS) have provided the foundation for modern studies into the composition of microbial communities. The use of these NGS methods allows for the detection and identification of (‘difficult-to-culture’) microorganisms using a culture-independent strategy. In the field of routine clinical diagnostics however, the application of NGS is currently limited to microbial strain typing for epidemiological purposes only, even though the implementation of NGS for microbial community analysis may yield clinically important information. This lack of NGS implementation is due to many different factors, including issues relating to NGS method standardization and result reproducibility. In this review article, the authors provide a general introduction to the most widely used NGS methods currently available (i.e., targeted amplicon sequencing and shotgun metagenomics) and the strengths and weaknesses of each method is discussed. The focus of the publication then shifts toward 16S rRNA gene NGS methods, which are currently the most cost-effective and widely used NGS methods for research purposes, and are therefore more likely to be successfully implemented into routine clinical diagnostics in the short term. In this respect, the experimental pitfalls and biases created at each step of the 16S rRNA gene NGS workflow are explained, as well as their potential solutions. Finally, a novel diagnostic microbiota profiling platform (‘MYcrobiota’) is introduced, which was developed by the authors by taking into consideration the pitfalls, biases, and solutions explained in this article. The development of the MYcrobiota, and future NGS methodologies, will help pave the way toward the successful implementation of NGS methodologies into routine clinical diagnostics.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                07 January 2022
                2021
                : 11
                : 768613
                Affiliations
                [1] 1 Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital , Zhengzhou, China
                [2] 2 Department of Clinical Laboratory, Henan Provincial People’s Hospital , Zhengzhou, China
                [3] 3 Department of Respiratory and Critical Care Medicine, Xuchang Central Hospital , Xuchang, China
                Author notes

                Edited by: Li Ang, First Affiliated Hospital of Zhengzhou University, China

                Reviewed by: Luigi Principe, Azienda Sanitaria Provinciale di Crotone, Italy; Arryn Craney, Orlando Health, United States

                *Correspondence: Juanjuan Ding, dingjuanhai@ 123456163.com ; Bing Ma, mabing2001@ 123456126.com ; Ying Li, 191880609@ 123456qq.com

                This article was submitted to Clinical Microbiology, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2021.768613
                8779735
                35071035
                327ce13e-96dc-4abc-abcc-17769a7c64be
                Copyright © 2022 Ding, Ma, Wei and Li

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2021
                : 10 December 2021
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 20, Pages: 6, Words: 2829
                Categories
                Cellular and Infection Microbiology
                Original Research

                Infectious disease & Microbiology
                nocardiosis,16s ribosomal rna gene,polymerase chain reaction,next generation sequencing,species,molecular diagnosis

                Comments

                Comment on this article