6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Platelet-Rich Plasma on the Oxymetholone-Induced Testicular Toxicity

      , , ,
      Diseases
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxymetholone is one of the anabolic steroids that has widely been used among teenagers and athletes to increase their muscle bulk. It has undesirable effects on male health and fertility. In this study, the therapeutic effects of platelet-rich plasma (PRP) on oxymetholone-induced testicular toxicity were investigated in adult albino rats. During the experiments, 49 adult male albino rats were divided into 4 main groups: Group 0 (donor group) included 10 rats for the donation of PRP, Group I (control group) included 15 rats, Group II included 8 rats that received 10 mg/kg of oxymetholone orally, once daily, for 30 days, and Group III included 16 rats and was subdivided into 2 subgroups (IIIa and IIIb) that received oxymetholone the same as group II and then received PRP once and twice, respectively. Testicular tissues of all examined rats were obtained for processing and histological examination and sperm smears were stained and examined for sperm morphology. Oxymetholone-treated rats revealed wide spaces in between the tubules, vacuolated cytoplasm, and dark pyknotic nuclei of most cells, as well as deposition of homogenous acidophilic material between the tubules. Electron microscopic examination showed vacuolated cytoplasm of most cells, swollen mitochondria, and perinuclear dilatation. Concerning subgroup IIIa (PRP once), there was a partial improvement in the form of decreased vacuolations and regeneration of spermatogenic cells, as well as a reasonable improvement in sperm morphology. Regarding subgroup IIIb (PRP twice), histological sections revealed restoration of the normal testicular structure to a great extent, regeneration of the spermatogenic cells, and most sperms had normal morphology. Thus, it is recommended to use PRP to minimize structural changes in the testis of adult albino rats caused by oxymetholone.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Platelet-Rich Plasma Activates Proinflammatory Signaling Pathways and Induces Oxidative Stress in Tendon Fibroblasts.

          Tendon injuries are one of the most common musculoskeletal conditions in active patients. Platelet-rich plasma (PRP) has shown some promise in the treatment of tendon disorders, but little is known as to the mechanisms by which PRP can improve tendon regeneration. PRP contains numerous different growth factors and cytokines that activate various cellular signaling cascades, but it has been difficult to determine precisely which signaling pathways and cellular responses are activated after PRP treatment. Additionally, macrophages play an important role in modulating tendon regeneration, but the influence of PRP on determining whether macrophages assume a proinflammatory or anti-inflammatory phenotype remains unknown.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platelet-rich plasma therapy and reproductive medicine

            Reports on clinical uses of platelet-rich plasma (PRP) have dramatically increased in the last decade. Indications for PRP therapy range from muscle and skeletal injuries to hair re-growth. More recently evidences have shown its positive effects in promoting endometrial and follicular growth and gestation in assisted reproduction cycles. We discuss the putative role of PRP on endometrial receptivity, with a brief history of its applications in research and clinical therapies. Despite its widespread uses in medicine, the mechanisms through which PRP exerts its regenerative effects are only postulated, not based on scientific data. There is an unmet need for advanced research to corroborate present findings in the clinical scenario.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PM 2.5 induces male reproductive toxicity via mitochondrial dysfunction, DNA damage and RIPK1 mediated apoptotic signaling pathway

                Bookmark

                Author and article information

                Journal
                DISECP
                Diseases
                Diseases
                MDPI AG
                2079-9721
                June 2023
                June 09 2023
                : 11
                : 2
                : 84
                Article
                10.3390/diseases11020084
                3222413e-1fb7-4101-ad9f-06162369bc3b
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article