7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Platelet-rich plasma therapy and reproductive medicine

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="Par1">Reports on clinical uses of platelet-rich plasma (PRP) have dramatically increased in the last decade. Indications for PRP therapy range from muscle and skeletal injuries to hair re-growth. More recently evidences have shown its positive effects in promoting endometrial and follicular growth and gestation in assisted reproduction cycles. We discuss the putative role of PRP on endometrial receptivity, with a brief history of its applications in research and clinical therapies. Despite its widespread uses in medicine, the mechanisms through which PRP exerts its regenerative effects are only postulated, not based on scientific data. There is an unmet need for advanced research to corroborate present findings in the clinical scenario. </p>

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF).

          The topical use of platelet concentrates is recent and its efficiency remains controversial. Several techniques for platelet concentrates are available; however, their applications have been confusing because each method leads to a different product with different biology and potential uses. Here, we present classification of the different platelet concentrates into four categories, depending on their leucocyte and fibrin content: pure platelet-rich plasma (P-PRP), such as cell separator PRP, Vivostat PRF or Anitua's PRGF; leucocyte- and platelet-rich plasma (L-PRP), such as Curasan, Regen, Plateltex, SmartPReP, PCCS, Magellan or GPS PRP; pure plaletet-rich fibrin (P-PRF), such as Fibrinet; and leucocyte- and platelet-rich fibrin (L-PRF), such as Choukroun's PRF. This classification should help to elucidate successes and failures that have occurred so far, as well as providing an objective approach for the further development of these techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift.

            Platelet-rich fibrin (PRF) belongs to a new generation of platelet concentrates, with simplified processing and without biochemical blood handling. The use of platelet gel to improve bone regeneration is a recent technique in implantology. However, the biologic properties and real effects of such products remain controversial. In this article, we therefore attempt to evaluate the potential of PRF in combination with freeze-dried bone allograft (FDBA) (Phoenix; TBF, France) to enhance bone regeneration in sinus floor elevation. Nine sinus floor augmentations were performed. In 6 sites, PRF was added to FDBA particles (test group), and in 3 sites FDBA without PRF was used (control group). Four months later for the test group and 8 months later for the control group, bone specimens were harvested from the augmented region during the implant insertion procedure. These specimens were treated for histologic analysis. Histologic evaluations reveal the presence of residual bone surrounded by newly formed bone and connective tissue. After 4 months of healing time, histologic maturation of the test group appears to be identical to that of the control group after a period of 8 months. Moreover, the quantities of newly formed bone were equivalent between the 2 protocols. Sinus floor augmentation with FDBA and PRF leads to a reduction of healing time prior to implant placement. From a histologic point of view, this healing time could be reduced to 4 months, but large-scale studies are still necessary to validate these first results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review.

              Cartilage defects (CDs) and the most common joint disease, osteoarthritis (OA), are characterized by degeneration of the articular cartilage that ultimately leads to joint destruction. Current treatment strategies are inadequate: none results in restoration of fully functional hyaline cartilage, for uncertain long-term prognosis. Tissue engineering of cartilage with auto-cartilage cells or appropriate mesenchymal stem cell (MSC)-derived cartilage cells is currently being investigated to search for new therapies. Platelet-rich plasma (PRP), an autologous source of factors obtained by centrifugation, possesses various functions. For culture of MSCs and cartilage cells, it might be substituted for fetal bovine serum (FBS) with high efficiency and safety. It enhances the regeneration of cartilage cells when added to cartilage tissue engineering constructs for repairing CDs and as regenerative injection therapy for OA. But challenges also remain. Some of the growth factors (GFs) present in PRP have negative effects on the OA joint. It is therefore unlikely that a mix of GFs some of which have negative effects in the OA joint, as present in PRP, will be of benefit in OA. Future directions of PRP application may concentrate on seeking an appropriate and innocuous agent like anti-VEGF antibody that can modulate and control the effect of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Assisted Reproduction and Genetics
                J Assist Reprod Genet
                Springer Science and Business Media LLC
                1058-0468
                1573-7330
                May 2018
                March 21 2018
                May 2018
                : 35
                : 5
                : 753-756
                Article
                10.1007/s10815-018-1159-8
                5984895
                29564738
                0fd9f479-5bd2-4ad0-8bf0-bf8f9cc773bb
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_

                Similar content1,589

                Cited by45

                Most referenced authors344