2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How machine learning can accelerate electrocatalysis discovery and optimization

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Machine learning can accelerate the process of electrocatalyst discovery and optimization, especially when incorporated into a closed-loop approach with autonomous laboratories. This review highlights the recent progress and challenges in this field.

          Abstract

          Advances in machine learning (ML) provide the means to bypass bottlenecks in the discovery of new electrocatalysts using traditional approaches. In this review, we highlight the currently achieved work in ML-accelerated discovery and optimization of electrocatalysts via a tight collaboration between computational models and experiments. First, the applicability of available methods for constructing machine-learned potentials (MLPs), which provide accurate energies and forces for atomistic simulations, are discussed. Meanwhile, the current challenges for MLPs in the context of electrocatalysis are highlighted. Then, we review the recent progress in predicting catalytic activities using surrogate models, including microkinetic simulations and more global proxies thereof. Several typical applications of using ML to rationalize thermodynamic proxies and predict the adsorption and activation energies are also discussed. Next, recent developments of ML-assisted experiments for catalyst characterization, synthesis optimization and reaction condition optimization are illustrated. In particular, the applications in ML-enhanced spectra analysis and the use of ML to interpret experimental kinetic data are highlighted. Additionally, we also show how robotics are applied to high-throughput synthesis, characterization and testing of electrocatalysts to accelerate the materials exploration process and how this equipment can be assembled into self-driven laboratories.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Combining theory and experiment in electrocatalysis: Insights into materials design

          Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. We conclude by extending this framework to emerging clean energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MHAOAL
                Materials Horizons
                Mater. Horiz.
                Royal Society of Chemistry (RSC)
                2051-6347
                2051-6355
                February 06 2023
                2023
                : 10
                : 2
                : 393-406
                Affiliations
                [1 ]Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, Lyon, France
                [2 ]Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
                Article
                10.1039/D2MH01279K
                36541226
                31d7bca1-303a-4532-b473-f8d8cbb9aeca
                © 2023

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article