5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Starter cultures can be defined as preparations with a large number of cells that include a single type or a mixture of two or more microorganisms that are added to foods in order to take advantage of the compounds or products derived from their metabolism or enzymatic activity. In foods from animal origin, starter cultures are widely used in the dairy industry for cheese, yogurt and other fermented dairy products, in the meat industry, mainly for sausage manufacture, and in the fishery industry for fermented fish products. Usually, microorganisms selected as starter culture are isolated from the native microbiota of traditional products since they are well adapted to the environmental conditions of food processing and are responsible to confer specific appearance, texture, aroma and flavour characteristics. The main function of starter cultures used in food from animal origin, mainly represented by lactic acid bacteria, consists in the rapid production of lactic acid, which causes a reduction in pH, inhibiting the growth of pathogenic and spoilage microorganisms, increasing the shelf-life of fermented foods. Also, production of other metabolites (e.g., lactic acid, acetic acid, propionic acid, benzoic acid, hydrogen peroxide or bacteriocins) improves the safety of foods. Since starter cultures have become the predominant microbiota, it allows food processors to control the fermentation processes, excluding the undesirable flora and decreasing hygienic and manufacturing risks due to deficiencies of microbial origin. Also, stater cultures play an important role in the chemical safety of fermented foods by reduction of biogenic amine and polycyclic aromatic hydrocarbons contents. The present review discusses how starter cultures contribute to improve the microbiological and chemical safety in products of animal origin, namely meat, dairy and fishery products.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae

          The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017

            (2018)
            Abstract This report of the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of zoonoses monitoring activities carried out in 2017 in 37 European countries (28 Member States (MS) and nine non‐MS). Campylobacteriosis was the commonest reported zoonosis and its EU trend for confirmed human cases increasing since 2008 stabilised during 2013–2017. The decreasing EU trend for confirmed human salmonellosis cases since 2008 ended during 2013–2017, and the proportion of human Salmonella Enteritidis cases increased, mostly due to one MS starting to report serotype data. Sixteen MS met all Salmonella reduction targets for poultry, whereas 12 MS failed meeting at least one. The EU flock prevalence of target Salmonella serovars in breeding hens, laying hens, broilers and fattening turkeys decreased or remained stable compared to 2016, and slightly increased in breeding turkeys. Salmonella results on pig carcases and target Salmonella serovar results for poultry from competent authorities tended to be generally higher compared to those from food business operators. The notification rate of human listeriosis further increased in 2017, despite Listeria seldom exceeding the EU food safety limit in ready‐to‐eat food. The decreasing EU trend for confirmed yersiniosis cases since 2008 stabilised during 2013–2017. The number of confirmed shiga toxin‐producing Escherichia coli (STEC) infections in humans was stable. A total of 5,079 food‐borne (including waterborne) outbreaks were reported. Salmonella was the commonest detected agent with S. Enteritidis causing one out of seven outbreaks, followed by other bacteria, bacterial toxins and viruses. The agent was unknown in 37.6% of all outbreaks. Salmonella in eggs and Salmonella in meat and meat products were the highest risk agent/food pairs. The report further summarises trends and sources for bovine tuberculosis, Brucella, Trichinella, Echinococcus, Toxoplasma, rabies, Coxiella burnetii (Q fever), West Nile virus and tularaemia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions and emerging applications of bacteriocins

              Bacteriocins, defined as ribosomally synthesized antimicrobial peptides, have traditionally been used as food preservatives, either added or produced by starter cultures during fermentation. In-depth studies of a select few bacteriocins opened exiting new research fields and broadened the application of these antimicrobial peptides. The possibility of developing bacteriocins into next generation antibiotics, accompanied with the rapid development in genetics and nanotechnology, paves the way to even more fascinating applications such as novel carrier molecules (delivery systems) and the treatment of cancer. Also, some bacteriocins are found to regulate quorum sensing which suggests novel applications for this group of substances. While there is some interesting translational research on bacteriocins from Gram-negative bacteria, the majority of application-oriented studies are focused on bacteriocins from Gram-positive microorganisms, mostly lactic acid bacteria. The applications of bacteriocins are expanding from food to human health.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                04 March 2021
                March 2021
                : 18
                : 5
                : 2544
                Affiliations
                [1 ]CECAV—Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
                [2 ]Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; crisarai@ 123456utad.pt
                Author notes
                [* ]Correspondence: juangarciadiez@ 123456gmail.com ; Tel.: +351-259350659; Fax: +351-259350480
                Author information
                https://orcid.org/0000-0002-6930-0728
                https://orcid.org/0000-0003-1657-0684
                Article
                ijerph-18-02544
                10.3390/ijerph18052544
                7967642
                33806611
                31973008-3173-473a-b347-c5858456e523
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 February 2021
                : 28 February 2021
                Categories
                Review

                Public health
                starter cultures,foodborne pathogens,fermented meats,cheese,yogurt,fermented fish,microbial food safety,chemical food safety

                Comments

                Comment on this article