4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanostructured Double Perovskite Cathode With Low Sintering Temperature For Intermediate Temperature Solid Oxide Fuel Cells

      , , , , , , ,
      ChemSusChem
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study focuses on reducing the cathode polarization resistance through the use of mixed ionic electronic conductors and the optimization of cathode microstructure to increase the number of electrochemically active sites. Among the available mixed ionic electronic conductors (MIECs), the layered perovskite GdBa0.5 Sr0.5 CoFeO5+δ (GBSCF) was chosen as a cathode material for intermediate temperature solid oxide fuel cells owing to its excellent electrochemical performance and structural stability. The optimized microstructure of a GBSCF-yttria-stabilized zirconia (YSZ) composite cathode was prepared through an infiltration method with careful control of the sintering temperature to achieve high surface area, adequate porosity, and well-organized connection between nanosized particles to transfer electrons. A symmetric cell shows outstanding results, with the cathode exhibiting an area-specific resistance of 0.006 Ω cm(2) at 700 °C. The maximum power density of a single cell using Ce-Pd anode with a thickness of ∼80 μm electrolyte was ∼0.6 W cm(-2) at 700 °C.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          A high-performance cathode for the next generation of solid-oxide fuel cells.

          Fuel cells directly and efficiently convert chemical energy to electrical energy. Of the various fuel cell types, solid-oxide fuel cells (SOFCs) combine the benefits of environmentally benign power generation with fuel flexibility. However, the necessity for high operating temperatures (800-1,000 degrees C) has resulted in high costs and materials compatibility challenges. As a consequence, significant effort has been devoted to the development of intermediate-temperature (500-700 degrees C) SOFCs. A key obstacle to reduced-temperature operation of SOFCs is the poor activity of traditional cathode materials for electrochemical reduction of oxygen in this temperature regime. Here we present Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta)(BSCF) as a new cathode material for reduced-temperature SOFC operation. BSCF, incorporated into a thin-film doped ceria fuel cell, exhibits high power densities (1,010 mW cm(-2) and 402 mW cm(-2) at 600 degrees C and 500 degrees C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. We further demonstrate that BSCF is ideally suited to 'single-chamber' fuel-cell operation, where anode and cathode reactions take place within the same physical chamber. The high power output of BSCF cathodes results from the high rate of oxygen diffusion through the material. By enabling operation at reduced temperatures, BSCF cathodes may result in widespread practical implementation of SOFCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells.

            Different layered perovskite-related oxides are known to exhibit important electronic, magnetic and electrochemical properties. Owing to their excellent mixed-ionic and electronic conductivity and fast oxygen kinetics, cation layered double perovskite oxides such as PrBaCo2O5 in particular have exhibited excellent properties as solid oxide fuel cell oxygen electrodes. Here, we show for the first time that related layered materials can be used as high-performance fuel electrodes. Good redox stability with tolerance to coking and sulphur contamination from hydrocarbon fuels is demonstrated for the layered perovskite anode PrBaMn2O5+δ (PBMO). The PBMO anode is fabricated by in situ annealing of Pr0.5Ba0.5MnO3-δ in fuel conditions and actual fuel cell operation is demonstrated. At 800 °C, layered PBMO shows high electrical conductivity of 8.16 S cm(-1) in 5% H2 and demonstrates peak power densities of 1.7 and 1.3 W cm(-2) at 850 °C using humidified hydrogen and propane fuels, respectively.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              High-Performance SOFC Cathodes Prepared by Infiltration

                Bookmark

                Author and article information

                Journal
                ChemSusChem
                ChemSusChem
                Wiley-Blackwell
                18645631
                September 21 2015
                September 21 2015
                : 8
                : 18
                : 3153-3158
                Article
                10.1002/cssc.201500509
                26227300
                3172a1c7-f2fd-49ac-92de-e306f382a716
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article