4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sb 3+ ‐Doping in Cesium Zinc Halides Single Crystals Enabling High‐Efficiency Near‐Infrared Emission

      1 , 1 , 1 , 1 , 2
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Self-interaction correction to density-functional approximations for many-electron systems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient and stable emission of warm-white light from lead-free halide double perovskites

              Lighting accounts for one-fifth of global electricity consumption1. Single materials with efficient and stable white-light emission are ideal for lighting applications, but photon emission covering the entire visible spectrum is difficult to achieve using a single material. Metal halide perovskites have outstanding emission properties2,3; however, the best-performing materials of this type contain lead and have unsatisfactory stability. Here we report a lead-free double perovskite that exhibits efficient and stable white-light emission via self-trapped excitons that originate from the Jahn-Teller distortion of the AgCl6 octahedron in the excited state. By alloying sodium cations into Cs2AgInCl6, we break the dark transition (the inversion-symmetry-induced parity-forbidden transition) by manipulating the parity of the wavefunction of the self-trapped exciton and reduce the electronic dimensionality of the semiconductor4. This leads to an increase in photoluminescence efficiency by three orders of magnitude compared to pure Cs2AgInCl6. The optimally alloyed Cs2(Ag0.60Na0.40)InCl6 with 0.04 per cent bismuth doping emits warm-white light with 86 ± 5 per cent quantum efficiency and works for over 1,000 hours. We anticipate that these results will stimulate research on single-emitter-based white-light-emitting phosphors and diodes for next-generation lighting and display technologies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                October 2021
                July 10 2021
                October 2021
                : 31
                : 40
                : 2105316
                Affiliations
                [1 ]The State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques School of Materials Science and Engineering South China University of Technology Guangzhou 510641 P. R. China
                [2 ]School of Physics and Optoelectronics South China University of Technology Guangzhou 510641 P. R. China
                Article
                10.1002/adfm.202105316
                305085b4-24da-497a-b361-9579cb8e2897
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article