88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute Versus Chronic Loss of Mammalian Azi1/Cep131 Results in Distinct Ciliary Phenotypes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Defects in cilium and centrosome function result in a spectrum of clinically-related disorders, known as ciliopathies. However, the complex molecular composition of these structures confounds functional dissection of what any individual gene product is doing under normal and disease conditions. As part of an siRNA screen for genes involved in mammalian ciliogenesis, we and others have identified the conserved centrosomal protein Azi1/Cep131 as required for cilia formation, supporting previous Danio rerio and Drosophila melanogaster mutant studies. Acute loss of Azi1 by knock-down in mouse fibroblasts leads to a robust reduction in ciliogenesis, which we rescue by expressing siRNA-resistant Azi1-GFP. Localisation studies show Azi1 localises to centriolar satellites, and traffics along microtubules becoming enriched around the basal body. Azi1 also localises to the transition zone, a structure important for regulating traffic into the ciliary compartment. To study the requirement of Azi1 during development and tissue homeostasis, Azi1 null mice were generated (Azi1 Gt/Gt) . Surprisingly, Azi1 Gt/Gt MEFs have no discernible ciliary phenotype and moreover are resistant to Azi1 siRNA knock-down, demonstrating that a compensation mechanism exists to allow ciliogenesis to proceed despite the lack of Azi1. Cilia throughout Azi1 null mice are functionally normal, as embryonic patterning and adult homeostasis are grossly unaffected. However, in the highly specialised sperm flagella, the loss of Azi1 is not compensated, leading to striking microtubule-based trafficking defects in both the manchette and the flagella, resulting in male infertility. Our analysis of Azi1 knock-down (acute loss) versus gene deletion (chronic loss) suggests that Azi1 plays a conserved, but non-essential trafficking role in ciliogenesis. Importantly, our in vivo analysis reveals Azi1 mediates novel trafficking functions necessary for flagellogenesis. Our study highlights the importance of both acute removal of a protein, in addition to mouse knock-out studies, when functionally characterising candidates for human disease.

          Author Summary

          Cilia are slender projections from the surface of most mammalian cells and have sensory and sometimes motile functions. They are essential for mammalian development and defects in cilia lead to a group of human diseases, termed ciliopathies, with variable symptoms including embryonic lethality, lung and kidney defects, blindness and infertility. Cilia are complex structures composed of hundreds of components, whose individual functions are poorly understood. We screened for mammalian genes important in building cilia, and identified Azi1/Cep131, a gene previously shown to be required for cilia formation and function in fish and flies. We show that if we acutely reduce levels of Azi1 in mouse cells, fewer cells form cilia, but if we generate cells chronically lacking all Azi1, cilia form normally. In addition, mice without any Azi1 are healthy and viable, confirming normal cilia function. However, in these mice, the highly specialised ciliary structure of the sperm tail does not form, resulting in male infertility. We suggest Azi1 has conserved trafficking roles in both primary cilia and the specialised sperm flagella. Abruptly removing Azi1 results in instability causing the existing cilia network to collapse, whereas chronic deletion of Azi1 allows the system to re-equilibrate, and cilia to form normally.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Proteomic characterization of the human centrosome by protein correlation profiling.

          The centrosome is the major microtubule-organizing centre of animal cells and through its influence on the cytoskeleton is involved in cell shape, polarity and motility. It also has a crucial function in cell division because it determines the poles of the mitotic spindle that segregates duplicated chromosomes between dividing cells. Despite the importance of this organelle to cell biology and more than 100 years of study, many aspects of its function remain enigmatic and its structure and composition are still largely unknown. We performed a mass-spectrometry-based proteomic analysis of human centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions. True centrosomal proteins were revealed by both correlation with already known centrosomal proteins and in vivo localization. We identified and validated 23 novel components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins. Protein correlation profiling permits the analysis of any multiprotein complex that can be enriched by fractionation but not purified to homogeneity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Centrioles, centrosomes, and cilia in health and disease.

            Centrioles are barrel-shaped structures that are essential for the formation of centrosomes, cilia, and flagella. Here we review recent advances in our understanding of the function and biogenesis of these organelles, and we emphasize their connection to human disease. Deregulation of centrosome numbers has long been proposed to contribute to genome instability and tumor formation, whereas mutations in centrosomal proteins have recently been genetically linked to microcephaly and dwarfism. Finally, structural or functional centriole aberrations contribute to ciliopathies, a variety of complex diseases that stem from the absence or dysfunction of cilia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss.

              Developmental abnormalities, cancer, and premature aging each have been linked to defects in the DNA damage response (DDR). Mutations in the ATR checkpoint regulator cause developmental defects in mice (pregastrulation lethality) and humans (Seckel syndrome). Here we show that eliminating ATR in adult mice leads to defects in tissue homeostasis and the rapid appearance of age-related phenotypes, such as hair graying, alopecia, kyphosis, osteoporosis, thymic involution, fibrosis, and other abnormalities. Histological and genetic analyses indicate that ATR deletion causes acute cellular loss in tissues in which continuous cell proliferation is required for maintenance. Importantly, thymic involution, alopecia, and hair graying in ATR knockout mice were associated with dramatic reductions in tissue-specific stem and progenitor cells and exhaustion of tissue renewal and homeostatic capacity. In aggregate, these studies suggest that reduced regenerative capacity in adults via deletion of a developmentally essential DDR gene is sufficient to cause the premature appearance of age-related phenotypes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2013
                December 2013
                26 December 2013
                9 January 2014
                : 9
                : 12
                : e1003928
                Affiliations
                [1 ]MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
                [2 ]Electron Microscopy Research Services, Medical School, Newcastle University, Newcastle, United Kingdom
                [3 ]Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
                [4 ]MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
                Washington University School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EAH IJJ PM. Performed the experiments: EAH MK MJF TD LBS. Analyzed the data: EAH PM. Contributed reagents/materials/analysis tools: APJ. Wrote the paper: EAH IJJ PM.

                Article
                PGENETICS-D-13-01720
                10.1371/journal.pgen.1003928
                3887133
                24415959
                3037e74f-0988-4263-9aaf-9367c3606113
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 June 2013
                : 14 September 2013
                Page count
                Pages: 21
                Funding
                Core funding for this study was provided by the Medical Research Council of Great Britain ( http://www.mrc.ac.uk). Grants provided support for LBS from the MRC (G1100354) and APJ from the Wellcome Trust (077266). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                DNA
                DNA repair
                Developmental Biology
                Organism Development
                Evolutionary Biology
                Evolutionary Developmental Biology
                Genetics
                Gene Function
                Genetic Screens
                Model Organisms
                Animal Models
                Mouse
                Molecular Cell Biology
                Cellular Types
                Germ Cells
                Somatic Cells
                Cell Division

                Genetics
                Genetics

                Comments

                Comment on this article