20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimativa do potencial de recuperação energética de resíduos sólidos urbanos usando modelos matemáticos de biodigestão anaeróbia e incineração Translated title: Estimation of municipal solid waste energy recovery potential using mathematical models of anaerobic biodigestion and incineration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RESUMO Atualmente, um dos grandes problemas enfrentados pelos gestores de resíduos sólidos urbanos (RSU) é a disposição final dos resíduos gerados por sua população. As disposições de resíduos devem ser feitas em espaços e sob condições adequados de modo a minimizar os impactos socioeconômicos e ambientais. Nesse contexto, este artigo teve por objetivo estimar o potencial de recuperação energética de RSU usando modelos de simulação matemática para a biodigestão anaeróbia e a incineração. Como objeto de estudo, foram considerados os resíduos dispostos no aterro sanitário de Caieiras, localizado no município de Caieiras (SP). Para avaliação da biodigestão anaeróbia, foram analisados modelos matemáticos que permitem estimar a produção de metano em função dos diversos fatores que interferem no processo (concentração de acetato e de micro-organismos, variação do pH, entre outros). No caso da incineração, foram considerados modelos matemáticos empíricos (baseados nas análises imediata, gravimétrica e elementar) para estimar o poder calorífico inferior dos RSU. De acordo com os resultados obtidos, para a biodigestão anaeróbia seria possível obter potência média de 38,8 MW. Caso a incineração fosse adotada como método de tratamento dos RSU, seria possível obter potência elétrica média de 214 MW (considerando a incineração de 100% dos resíduos). Com base nas simulações realizadas para a biodigestão anaeróbia e a incineração como possíveis métodos de destinação dos RSU, conclui-se que o processo de incineração apresenta potencial de geração de eletricidade aproximadamente cinco vezes maior do que a conversão energética da biodigestão anaeróbia.

          Translated abstract

          ABSTRACT Currently, one of the major problems faced by managers of solid urban waste is the final disposal of the waste generated by their population. Waste disposals should be done in spaces and/or under appropriate conditions, in order to minimize socioeconomic and environmental impacts. In this context, this article aims at estimating the energy recovery potential of urban solid waste using mathematical simulation models for anaerobic biodigestion and incineration. As object of study, the waste disposed in Caieiras landfill, located in the city of Caieiras/SP, was considered. To evaluate the anaerobic digestion, mathematical models were used to estimate methane production as function of the various factors that influence the process (acetate and microorganisms concentration, pH variation among others). In the case of incineration, empirical mathematical models (based on immediate, gravimetric and elementary analysis) were used to estimate the lower heating value of urban solid waste. According to the results obtained, it would be possible to obtain an average power of 38.8 MW for anaerobic digestion. If the incineration method was adopted, it would be possible to obtain an average electrical power of 214 MW (considering the total incineration of the waste). Based on the simulations carried out for anaerobic biodigestion and incineration as possible methods of municipal solid waste disposal, it is concluded that the incineration process of municipal solid waste presents a greater potential of electricity generation, approximately five times higher than the energy conversion potential of anaerobic digestion.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Optimisation of the anaerobic digestion of agricultural resources.

          It is in the interest of operators of anaerobic digestion plants to maximise methane production whilst concomitantly reducing the chemical oxygen demand of the digested material. Although the production of biogas through anaerobic digestion is not a new idea, commercial anaerobic digestion processes are often operated at well below their optimal performance due to a variety of factors. This paper reviews current optimisation techniques associated with anaerobic digestion and suggests possible areas where improvements could be made, including the basic design considerations of a single or multi-stage reactor configuration, the type, power and duration of the mixing regime and the retention of active microbial biomass within the reactor. Optimisation of environmental conditions within the digester such as temperature, pH, buffering capacity and fatty acid concentrations is also discussed. The methane-producing potential of various agriculturally sourced feedstocks has been examined, as has the advantages of co-digestion to improve carbon-to-nitrogen ratios and the use of pre-treatments and additives to improve hydrolysis rates or supplement essential nutrients which may be limiting. However, perhaps the greatest shortfall in biogas production is the lack of reliable sensory equipment to monitor key parameters and suitable, parallelised control systems to ensure that the process continually operates at optimal performance. Modern techniques such as software sensors and powerful, flexible controllers are capable of solving these problems. A direct comparison can be made here with, for instance, oil refineries where a more mature technology uses continuous in situ monitoring and associated feedback procedures to routinely deliver continuous, optimal performance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term anaerobic digestion of food waste stabilized by trace elements.

              The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Journal
                esa
                Engenharia Sanitaria e Ambiental
                Eng. Sanit. Ambient.
                Associação Brasileira de Engenharia Sanitária e Ambiental - ABES (Rio de Janeiro, RJ, Brazil )
                1413-4152
                1809-4457
                May 2019
                : 24
                : 2
                : 347-357
                Affiliations
                [1] Santo André São Paulo orgnameUniversidade Federal do ABC Brazil
                Article
                S1413-41522019000200347
                10.1590/s1413-41522019179023
                2efa87ec-4430-40f8-9bab-0fd5767fae62

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 06 May 2017
                : 06 March 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 42, Pages: 11
                Product

                SciELO Brazil

                Categories
                Artigo Técnico

                modelagem matemática,mathematical modeling,estimate,methane gas,energy potential,estimativa,gás metano,potencial energético

                Comments

                Comment on this article