11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetics of Sexual Development: An Evolutionary Playground for Fish

      , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Teleost fishes are the most species-rich clade of vertebrates and feature an overwhelming diversity of sex-determining mechanisms, classically grouped into environmental and genetic systems. Here, we review the recent findings in the field of sex determination in fish. In the past few years, several new master regulators of sex determination and other factors involved in sexual development have been discovered in teleosts. These data point toward a greater genetic plasticity in generating the male and female sex than previously appreciated and implicate novel gene pathways in the initial regulation of the sexual fate. Overall, it seems that sex determination in fish does not resort to a single genetic cascade but is rather regulated along a continuum of environmental and heritable factors.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          DMY is a Y-specific DM-domain gene required for male development in the medaka fish.

          Although the sex-determining gene Sry has been identified in mammals, no comparable genes have been found in non-mammalian vertebrates. Here, we used recombinant breakpoint analysis to restrict the sex-determining region in medaka fish (Oryzias latipes) to a 530-kilobase (kb) stretch of the Y chromosome. Deletion analysis of the Y chromosome of a congenic XY female further shortened the region to 250 kb. Shotgun sequencing of this region predicted 27 genes. Three of these genes were expressed during sexual differentiation. However, only the DM-related PG17 was Y specific; we thus named it DMY. Two naturally occurring mutations establish DMY's critical role in male development. The first heritable mutant--a single insertion in exon 3 and the subsequent truncation of DMY--resulted in all XY female offspring. Similarly, the second XY mutant female showed reduced DMY expression with a high proportion of XY female offspring. During normal development, DMY is expressed only in somatic cells of XY gonads. These findings strongly suggest that the sex-specific DMY is required for testicular development and is a prime candidate for the medaka sex-determining gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes.

            The genes that determine the development of the male or female sex are known in Caenorhabditis elegans, Drosophila, and most mammals. In many other organisms the existence of sex-determining factors has been shown by genetic evidence but the genes are unknown. We have found that in the fish medaka the Y chromosome-specific region spans only about 280 kb. It contains a duplicated copy of the autosomal DMRT1 gene, named DMRT1Y. This is the only functional gene in this chromosome segment and maps precisely to the male sex-determining locus. The gene is expressed during male embryonic and larval development and in the Sertoli cells of the adult testes. These features make DMRT1Y a candidate for the medaka male sex-determining gene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sex chromosome specialization and degeneration in mammals.

              Sex chromosomes--particularly the human Y--have been a source of fascination for decades because of their unique transmission patterns and their peculiar cytology. The outpouring of genomic data confirms that their atypical structure and gene composition break the rules of genome organization, function, and evolution. The X has been shaped by dosage differences to have a biased gene content and to be subject to inactivation in females. The Y chromosome seems to be a product of a perverse evolutionary process that does not select the fittest Y, which may cause its degradation and ultimate extinction.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                March 19 2014
                March 2014
                March 19 2014
                March 2014
                : 196
                : 3
                : 579-591
                Article
                10.1534/genetics.114.161158
                3948791
                24653206
                2ec2d383-1c7f-4233-9239-7d7b9c3349f3
                © 2014
                History

                Comments

                Comment on this article